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A THRESHOLD FOR A CARICATURE 
OF THE NERVE EQUATION 

BY H. P. McKEAN1 AND V. MOLL 

1. Introduction. Hodgkin-Huxley [1952]2 described the conduction of 
the nervous impulse in the optical nerve of a squid.3 The physiological fact 
to be modelled is that stimuli below threshold damp out and so convey no 
information, but a stimulus above threshold is rapidly converted into a train 
of pulses of approximately fixed shape and spacing that travel down the line 
with little distortion. Fitzhugh [1961/69] and Nagumo et al. [1964] proposed 
a simplified model:4 
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(1) ^ = ^ 2 + u(x - *0(u - <0 + e~Ct f + be~Ct * u> (*.x) € [0, oo] x R, 

in which 0 < o < 1, 6 < 0 is a (small) coupling, c > 0 is a damping, and ƒ 
is (part of the) initial data. McKean [1970] suggested replacing the cubic in 
(1) by a broken line of the same general shape. The present announcement 
deals with this caricature: 

(2) ^ = ^ - u + {liîu>a) + e-ctf + be-ct*u, (t, x) e [0, oo] x R. 

It is believed, but not proven, that (1) and (2) have similar portraits in the 
large. This would be helpful since (2) is much more tractable than (1). The 
mathematical problem posed by (2) (or (1)) is to classify its waveforms and 
to prove that every solution of a suitable initial size and shape, tracked at the 
proper speed, converges to one of them. The actual diversity of waveforms 
for (2) is quite staggering, as Feroe [1981] and others have confirmed: For 
suitable values of a, 6, c, (2) admits trains of 1,2,3,. . . , oo pulses; moreover, 
the oo-pulse trains come in many varieties. In view of this complexity it is 
natural to classify the waveforms according to the number of crossings of the 
level a and to begin with the simplest cases. 

2. One crossing: rising waves. McKean [1983/84] dealt with this 
case for small 6, c > 0 and a(l — b/c) < 1; the same result was obtained for 
b = 0 by Fife-Mcleod [1977] for (1) and by Terman [1983] for (2). The fact 
is that, up to translation, (2) has a single waveform w(x) which rises from 
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w(—oo) = 0 to w(+oo) = (1 — b/c)"1 > a; it travels at a definite speed 
k = k(a, 6, c) and may be standardized by fixing w(0) = a. Now let u(t, x) be 
any solution of (2) issuing from data of the same general (rising) shape as w. 
Then u(t, x + kt) = w(x — ra) + o(l) for t ] oo, as proposed above. McKean 
[1983/84] proved a little more: The phase shift m is a smooth function of 
the initial data with nonvanishing gradient, so that the whole space of data 
(of the present rising shape) is foliated by smooth leaves of codimension 1 
distinguished by the associated value of ra. 

3. Two crossings: phase portrait. The next simplest case (two cross­
ings) is the subject of this announcement. A complete picture is obtained, 
but only for b = 0 and c = oo, which makes the last two terms drop out of 
(2). Then (2) admits a waveform w(x) vanishing at zboo with a single peak 
above the level a provided a < 1/2. The speed vanishes, so w is a standing 
wave; moreover, it is symmetrical about its peak (which may be placed at 
x = 0, by translation) and falls steadily for x > 0. The flow regulated by (2) 
preserves the space of data of the same general (symmetrical falling) shape. 
A technical difficulty must be confessed: If a is small, if the initial datum 
satisfies u(0) = a > u(x) (x ^ 0), and if b = —u"(0) > 0 is also small, then 
(2) has a lower solution, which falls at once below the level a and follows 
du/dt = d2/dx2 — u to ultimate collapse [u = 0], and also an upper solution, 
which is generally distinct. This does not happen if a -h 6 exceeds the number 

r\ rct-^li+Vtt) e-x
2/4 1 

a* = max I dt —==- dx < -, 
c > 0 ^o y c t - 1 / 2 ( i_ v ^— i ) V47T 2 

so it is safest to take a* < a < 1/2. Then the solution of (2) is unambigu­
ous. Now an infinitesimal analysis of (2) about the standing wave reveals the 
existence of one unstable mode, a spectral gap down to —1, and continuous 
spectrum filling (—oo, — 1], indicating the presence of a codimension-1 saddle-
point centered at the standing wave; indeed, this is exactly the phase portrait 
of (2), not just in the small, but in the large. There is a region of collaps­
ing data for which the solution ultimately falls below the level a and follows 
du/dt = d2u/dx2 — u to the resting state w(oo, x) = 0; a region of expanding 
data for which the leading (trailing) edge of the solution acts like a falling 
(rising) wave moving out to +oo (—oo), and the resting state u(oo,x) = 1 
is achieved; and these two regions are separated by a smooth submanifold of 
codimension 1 (the threshold) on which every trajectory tends exponentially 
fast to the standing wave. 

3. Proofs. The advantage of (2) over (1) is that the behaviour of u(t,x) 
for t t oo is regulated by its median: 

m(t) = the positive root of u(t, x) = a if w(t, 0) > a, 

= 0 iïu(t,Ö)<a. 
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The point is that 

u(t,x) = e * / ==—uo{y)dy 
( , J-oc V47rt 
^ ' /»t /*x+m(t-s) e - x 2 / 4 a 

+ / e~s ds / —7==- dy, 
70 Jx—r - m ( t - s ) V^TTS 

in which the first integral is negligible for t Î oo. If m(i) > 0, then evaluation 
of (3) at x = m(i) yields a (complicated) integral equation: 

(4) o = 0 ( c - * ) + f e~sds f 
JO Jrr 

m(t)+m(t-s) e-x
2/As 

— cto. 
m ( t ) - m ( t - s ) \/47TS 

This is the chief tool. There are four main steps. 
Step 1 is to prove that the median is bounded from 0 and oo if the solution 

is critical in the sense that it neither collapses (to u = 0) nor expands (to 
u = l) .5 This provides a compactness to the translates of m, which permits 
the question of the tendency of critical solutions to the standing wave to be 
reduced to the question of whether 

oo pm(t)+m(t-s) -x2 /4s 
(5) a= / e~sds / 

JO Jm(t)-
ds 

m(t)-m(t-s) V47TS 

has any other solutions besides the (constant) median m(t) = ra(oo) of the 
standing wave. The answer is no, it does not, provided a is close to 1/2.6 The 
proof is by repeated estimation of \m(t) — ra(oo)| in terms of |m*(t)| and vice 
versa, the appraisals being ultimately contradictory unless m(t) = ra(oo). 

Step 2 is to return to (4) armed with the information that the actual median 
satisfies m(t) = ra(oo) + o(l) and elicits the sharp estimate m(t) — m(oo) = 
0(e - tVÏ)- This shows, via (4), that u(t,x) tends exponentially fast to the 
standing wave. 

Step 3 is to elicit the existence of a sharp threshold. Let u(x) be any (sym­
metrical falling) initial datum of (2). The previous remarks about collapse 
and expansion imply the existence of numbers 0 < c * < c * < o o such that 
the solution of (2) issuing from cu(x) collapses for 0 < c < c*, expands for 
c* < c < oo, and does neither (i.e., is critical) for c* < c < c* if there is a 
gap (c* < c*). The existence of such a gap is unreasonable in view of the 
infinitesimal analysis cited before and the stabilization of critical solutions to 
the standing wave; in fact, it is nonexistent, so that each ray R + n contains 

5Terman [1983] proved that, for small b < 0, u expands to u = (1 — b/c) 1 as soon as 
its initial data lies above the level a in a sufficiently long interval. 

6The same may be true without the proviso, but the proof escapes us; indeed, there 
is still the intriguing possibility that (5) admits nonconstant (periodic?) solutions if a is 
small. 
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just one critical point. These form the threshold advertised before. The proper 
value of c is the critical multiplier of u\ the locus c = 1 is the threshold. 

Step 4 is to prove that the threshold is a smooth manifold of codimension 
1 in the ambient space; the fact that a is close to 1/2 is also important here. 
A self-evident technical difficulty is that (2) is not close to its variational 
equation in any conventional sense, owing to the fact that the nonlinearity is 
not smooth. This is overcome by making a detailed estimate of the difference 
v = u + - u- of two neighboring critical solutions of (2). The result is 

poo 

(6) v = ewtA(a:) / BVQ dx + o(l) (t Î oo), 
Jo 

in which u > 0 is the eigenvalue for the unstable infinitesimal mode cited 
before, A > 0 is the associated ground state, and B > 0 is a closely allied 
function expressed as a functional integral based upon the diffusion with in­
finitesimal operator d2/dx2 + 2(A'/A)(d/dx) (x > 0), subject to reflection at 
x = 0. Now u+ and u- are critical, so v = o(l) as t | oo and /0°° Bvo = 0, 
by (6). The smoothness of the threshold is deduced from that by identify­
ing the gradient of the critical multiplier c on the threshold with the limit of 
-f?[/0°° BUQ]~X as the data ti+o and u_o are brought into coincidence. This 
shows that c is smooth on threshold and, since it is a homogeneous function 
of degree - 1 , off threshold, so it is smooth in the large, and the threshold 
(c = 1) inherits that property. This was the aim of Step 4. The details will 
be published elsewhere. 
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