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Someone said it first: "Having a theory of nonlinear differential equations 
as opposed to a theory of linear differential equations is comparable to having 
a theory of nonchickens as opposed to a theory of chickens". (Professor Jean 
Mawhin has informed the reviewer that "bananas" is sometimes substituted 
for "chickens".) Since the book under review is mainly concerned with 
nonlinear differential equations and since it is impossible to review an area as 
broad as that of nonchickens, past, present, and future in only a few thousand 
words, the reviewer must restrict his attention to those types of nonlinear 
differential equations genuinely dealt with by the author. A more "global" 
discussion can be found in the review [11] of another book co-authored by 
Fuöik. 

In the reviewer's opinion a suitable subtitle of the book would be A survey of 
the boundary value problem 

(1) Aw + g(w) = h(x), u 190 = 0 

and variations thereof. The most common variations considered are higher-order, 
semilinear, elliptic boundary value problems, ordinary differential equations 
with periodic boundary conditions, and periodic-boundary value problems for 
semilinear wave equations. A case may be made against this description on the 
basis that much of the book concerns the operator equation 

(2) Lu = Nu 

where « is in a Banach space, L is linear, and N is nonlinear. However, those 
familiar with the book would probably agree that most of the theory developed 
for (2), by the author, was motivated by specific results for the problem (1) and 
not the other way around. In any case, this review is for the nonexpert and for 
this reason we emphasize the more concrete object (1). 

Let us suppose, for simplicity, that g is at least of class C1 and that h and the 
bounded domain Q CRN (N > l)are sufficiently regular. The generality of the 
nonlinearity makes it difficult to give a useful classification of problems of the 
form (1) but there are four types which stand out in the current literature. 
These types, which are emphasized in the book, are nonresonance problems, 
resonance problems, problems with rapid nonlinearities, and problems with 
jumping nonlinearities. 

Although there does not seem to be any precise definition of what a 
nonresonance problem is, most of the persons who have used the term would 
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probably agree that (1) is a nonresonance problem if g(s)/s remains in a 
closed interval which does not contain any eigenvalues of the linear problem 

(3) Aw + Aw = 0, u\du = 0 

for \s\ sufficiently large. It appears that a special case of the condition was 
first considered in a classic paper of Hammerstein [32] on nonlinear integral 
equations. The results of this paper, applied to an integral equation, equivalent 
to (1), show that if N < 2 and g(s)/s <y <X{ for | s | sufficiently large, where 
À j is the least eigenvalue of (3), then (1) has at least one solution for any 
smooth h. Using variational methods, Hammerstein was able to show more 
generally that if G' — g, y is as above, and for some constant C the weaker 
condition G(s) < ys2/2 + C holds for all s9 then (1) is solvable; he also 
showed that if the stronger condition g'(s) < y holds for all s9 then (1) has a 
unique solution. Dolph [23] extended the work of Hammerstein by showing 
that if / is a closed interval containing no eigenvalue of (3) and g(s)/s E I for 
| s | large, then (1) is solvable; moreover, he showed that the stronger condition 
g'(s) E / for all s implies unique solvability. Very recently, Dancer [22] 
established the following complementary result: If the range of g' contains an 
eigenvalue of (3) in its interior, then there exists a smooth h for which (1) has 
more than one solution. 

One type of nonresonance problem which has been investigated after Fuóik's 
death in 1979 is the question of existence of nonzero solutions of (1) in the case 
where h is identically zero and g(0) = 0. For example, a recent abstract result 
obtained by Amann and Zehnder [3] shows that if l i m ^ ^ g'(s) = 
lim5_^_00g'(.s) = g'(°o)> g(0) = 0, g'(oo) is not an eigenvalue of (3), and the 
half-open interval (g'(0), g'(°°)] contains an eigenvalue of (3), then Aw + g(w) 
= 0 has a nonzero solution. Chang [16] has given a short proof of their 
underlying abstract principle. Stronger multiplicity results have been obtained 
with more assumptions on g—see for example, Ambrosetti and Mancini [6] 
and Hempel [34] and Clark [18,19] for the case g even. 

In Fuöik's book nonresonance problems are discussed in two brief chapters 
which comprise a part of the book entitled Nonlinear perturbations of linear 
invertible operators. As explained in the book this part serves mainly to 
introduce the part entitled Nonlinear perturbations of linear noninvertible opera­
tors which, in keeping with current terminology, concerns resonance problems. 

The prototypic resonance problem is a problem of the form (1) in which 
lim5^00g(s)/s = lim5__00g(^)/5 = Xk9 where Xk is an eigenvalue of (3). A 
large portion of the book is concerned with the special case where g(s) — \ks 
+ f(s) and f(s) is bounded on the real line. As was shown in [37], if the limits 
lim5_± 00/(5) = / (±oo ) exist, if Xk is a simple eigenvalue of (3), and either of 
the conditions /(-oo) <f(s) </(oo) or /(-oo) >f(s) >f(oo) hold for all s, 
then a necessary and sufficient condition for solvability of (1) can be given. 
For example, if ƒ satisfies either of these conditions, k = 1, &x is an eigenfunc­
tion corresponding to Xl9 and (, ) denotes the usual L2(Q) inner product, then 
the necessary and sufficient condition is that (A,0i) / (1, ©^ belong to the 
range of ƒ. Even if one or both of the limits /(-oo), / ( + 00) are infinite, this 
condition is necessary and sufficient for solvability if /(-oo) > f(s) > /(oo) for 
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all s E (-00, oo). This result is a special case of a theorem of McKenna and 
Rauch [43] which also applies to distributional solutions of higher-order, 
semilinear boundary value problems with strong nonlinearities, that is, nonlin-
earities which do not map L2(12) into itself. The work of de Figueiredo and 
Gossez [25] also gives a unified treatment of some resonance and nonresonance 
problems for higher-order, semilinear problems with strong nonlinearities. 

Recently, there have appeared several research papers (for example [20, 26]) 
which have considered the case g(s) = \ks + f(s) where f(± oo) = 0 and have 
given sufficient conditions for solvability of (1) when k — 1. Since the methods 
of these papers rely strongly on the fact that an eigenfunction corresponding to 
Xj does not vanish in £2, there do not seem to be any immediate extensions to 
the case k > 1. 

Fucik's book contains discussions of several abstract theorems dealing with 
resonance problems which are mainly due to members of the Prague school 
[27, 29, 44]. The book also contains a section on resonance and nonresonance 
problems for periodic ordinary differential equations and one on the use of 
critical point theory in the study of resonance problems. The section on 
periodic differential equations is largely influenced by xesults of Mawhin and 
his co-workers (see, for example, [8, 31, and 41]) while the one on critical point 
theory extends the approach used in [1]. 

An important reference for resonance problems, which supplements the 
book, is Chapter II of the substantial paper by Brezis and Nirenberg [12]. This 
paper obtains many results concerning resonance as applications of theorems 
concerning the range of the sum of two nonlinear operators. The reviewer also 
recommends the recent monograph of Haraux [33] which discusses resonance 
problems for abstract evolution equations. 

Following Fucik, (1) is said to be a problem with a rapid nonlinearity if 
\ims^± 00(g(s)/s) = oo, e.g. g(s) = s3; the solvability of (1) when g(s) = -s3 

follows from Hammerstein's paper if N < 2 and from the well-known method 
of subsolutions and supersolutions [49] for arbitrary N. In contrast, it appears 
to be unknown if Aw + u3 = h(x), u \ dQ, = 0 is solvable if N = 2. 

Problems with rapid nonlinearities are better understood when N = 1. Using 
the "shooting method" Ehrmann [24], Fucik and Lovicar [28], and others have 
shown that if N = 1 and g is a rapid nonlinearity, then (1) has infinitely many 
solutions. Fucik and Lovicar were also able to prove the existence of at least 
one solution when the boundary conditions are periodic. Cesari [14] has given 
a functional-analytic proof of the solvability of (1) when N = 1, g(s) = s3 and 
h(x) = sin x and he has treated similar problems with different boundary 
conditions in [15]. Variants of Cesari's method have also been used to 
investigate resonance problems (see [27, 29, or 37]). 

Although the book does not discuss problems with rapid nonlinearities for 
N > 1, some progress has been made in this direction, especially for the case 
where g(0) = 0 and h is identically zero. For special forms of g there are results 
for such problems that follow from an old theorem of Lyusternik [40] concern­
ing constrained critical points of even functionals on real Hubert spaces. For 
example, if N < 3 an application of this theorem implies the existence, in a 
suitable Sobolev space, of a sequence of functions {um}™={ with norms equal 
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to one and a corresponding sequence of positive numbers {Xm}™=l such that 
Awm + \mu3

m = 0, um | dQ = 0, and \\mm^O0\m = oo. Setting vm = Xl£2um one 
obtains an unbounded sequence of solutions of Aw + w3 = 0, w | 3S2 = 0. This 
is also implied by a rather general result obtained by Ambrosetti and Rabino-
witz in [5]. They have shown that if g is odd, g(s) does not grow fast as 
S(N+2)/(N-2) a s | .s-1 -> oo, and there exists a constant © > 2 such that 0 < G(s) 
< @~lsg(s) for | s | large, where G' — g, G(0) = 0, then (1) has solutions with 
arbitrarily large norms when h is identically zero. 

If g is not odd but satisfies the extra conditions g(0) = 0 and g'(0) <XU 

then the " mountain pass theorem" can be used to ascertain the existence of at 
least one nonzero solution of Aw + g(w) = 0, u | 9Œ = 0. Benci and Rabino-
witz [9] have obtained other conditions for the existence of a nontrivial 
solution when g is not necessarily odd. Very recently and simultaneously, Bahri 
and Berestycki [7] and Struwe [51] have shown that if g(s) is a rapid 
nonlinearity which satisfies certain technical assumptions and which does not 
grow faster than a certain power depending on N, then the inhomogeneous 
problem (1) has infinitely many solutions. 

On p. 279 of the book under review Fucik poses the question of whether or 
not the problem Aw + \u\eu = h(x), u\dQ = 0 is solvable if e > 0 is suffi­
ciently small. When N = 3 the result of Bahri, Berestycki, and Struwe answers 
the question in the affirmative if e < 0.693. 

The term "jumping nonlinearity" was first used by Fucik in [30] although it 
appears that Ambrosetti and Prodi [4] wrote the first paper on the subject. In 
the current literature (1) is usually called a problem with a jumping nonlinear­
ity if it is not a nonresonance problem, as defined above, and 

limsupg(s)/s < l iminfg(s) /s . 

Ambrosetti and Prodi showed that if g is strictly convex and the limits g'(± oo) 
satisfy 0 < g'(-oo) < Xx < g'(oo) < X2 then, under standard regularity as­
sumptions, there exists a closed, connected manifold M in the space Ca(iï) 
(0 < a < 1) of codimension one such that the complement of M consists of 
two open, disjoint, connected sets U0 and U2 having the properties that (1) has 
zero, exactly one, or exactly two solutions depending on whether h belongs to 
U0, M, or U2, respectively. Subsequent work of Kazdan and Warner [36] and 
Berger and Podalak [10] elucidated the form of U0, Mx and U2. Results of the 
first of these papers showed that if lim s u p ^ . ^ g{s)/s < Xx < 
liminf5_ + 00g(^)/5 and h(x) = hx(x) + 50(x), where @ is a positive normal­
ized eigenf unction corresponding to Xx and hx is orthogonal to 0 , then there 
exists a number s0 depending on hx such that 

(4) ku +g(u) = hx(x)+s®(x), u | dti = 0 

is solvable if s > s0 and is not solvable if s < s0. 
Fucik's book discusses extensions of the Ambrosetti-Prodi theorem through 

the work of Kazdan and Warner, but many other papers on this subject have 
appeared in the last few years. A wide-open problem concerns the multiplicity 
of solutions of (4). In this direction it was simultaneously shown by Amann 
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and Hess [2] and Dancer [21] that if g(s) satisfies the above-mentioned 
conditions and satisfies a suitable growth condition as s -» oo, then (4) is 
solvable for s = s0 and has at least two solutions for s > s0. McKenna and the 
reviewer [38] then showed that the additional hypotheses that X2 *

s simple and 
lim^oog(s)/s E (X2> ^3) imply the existence of at least three solutions for 
sufficiently large s. Next, Solimine [50] showed that this is still true under the 
weaker conditions limsup^.^ g(s)/s <\x,y = hms^00g(s)/s > \2> and y is 
not an eigenvalue of (3), and, very recently, Hofer [35] showed these same 
conditions imply the existence of at least four solutions for large s. 

The above-mentioned results of Dancer, Amann, Hess, and Hofer prove the 
first two cases of the conjecture made in [38] that if limswp^.^g(s)/s <\x, 
Xm < Xw+1 for some m > 1, where each eigenvalue is counted as often as its 
multiplicity, and \m < Ums_00g(s)/s < \m+v then (4) has at least 2m solu­
tions for sufficiently large s. In [39] it is shown that this is true if JV = 1. 

Problems with jumping nonlinearities in which the interval 

limsupg(s)/s, liminf g(s)/s I 

does not contain Xx were apparently considered in the same year, for the first 
time, by both Fuöik [30] and Podolak [46]. Fuöik considered an ordinary 
differential equation in which the above-mentioned interval may contain more 
than one eigenvalue while Podolak showed that the Ambrosetti-Prodi phenom­
enon takes place if g(s) = Xks + f(s\ k > 2, \k is simple, l i m ^ ^ f'(s) = e, 
lim5__00 f'(s) = -e where e > 0 is small, ƒ is convex, and (<j>k91 <j>k |) ¥^ 0 if <f>k is 
an eigenfunction corresponding to X .̂ In this book, Fuöik discusses results 
concerning this problem, which is still a hot research topic, up to 1978. A 
recent, noteworthy contribution, which extends the work of Podolak, is that of 
Ruf [48]. 

To do justice to the methods which have been applied to the types of 
problems we have discussed would require us to at least double the size of this 
review; therefore, the reviewer will make only a few remarks concerning 
methods—a good discussion of modern methods in the theory of nonlinear 
boundary value problems can be found in the survey article [45] and a 
historical discussion can be found in the introductory part of [31]. 

What the reviewer finds fascinating about the study of (1) is that there are 
results involving diverse hypotheses on g which are obtainable by one particu­
lar method and there are results concerning very particular g which are 
obtainable by a combination of diverse methods. For example, the method of 
obtaining critical points of the inf-max type via a deformation argument has 
been used as the main tool to obtain results on resonance problems in [47], 
nonresonance problems in [19], problems with rapid nonlinearities in [5], and a 
problem with a jumping nonlinearity in [13]. On the other hand, a forthcoming 
paper by Mawhin and Willem [42] which is concerned with the particular 
resonance-type problem, combines order methods, degree-theoretic methods, 
variational methods, and convex analysis. 

The methods most favored by Fuöik in the book usually involve formulating 
a problem as an abstract equation of the form (2) and considering a splitting of 
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(2) into a pair of coupled equations involving variables from certain direct 
summands of the range and domain spaces of L. The coupled equations are 
then studied using degree theory, monotone operator theory, implicit function 
theorems, etc. This splitting technique is sometimes referred to as the alterna­
tive method (after Cesari [14, 15]) and sometimes as the Lyapunov-Schmidt 
method as in [48]. The distinction between these two methods, as made in 
Chapter 2 of [17], is that in the Lyapunov-Schmidt method one of the direct 
summands in the domain space of L is the kernel of L, while in the alternative 
method, one of direct summands in the domain space may be any subspace 
containing the kernel. 

In the study of (1) the splitting method has been effective except in the study 
of problems involving rapid nonlinearities where variational methods seem to 
be the only known effective tool when N > 1. 

For the neophyte in nonlinear analysis the book is a good place to begin 
since the author presupposes little on the part of the reader and gently 
introduces each new topic with a discussion of a one-dimensional problem of 
the form (1). 

An early version of the book consisted of mimeographed notes which were 
mailed throughout the world by the author. These notes stimulated some 
research which is reported on in the present version; this version should 
continue to stimulate research for quite some time to come. 
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What is number theory good for? No one doubts that many branches of 
mathematics owe their existence to—or, at least, were strongly stimulated by 
—problems of the "real world", like those of physics, engineering, etc. 
Familiar examples are the calculus and the theory of differential equations 
needed in celestial mechanics; partial differential equations that are indis­
pensable in hydrodynamics and so on. But number theory? Often number 
theorists, when challenged by our first question (usually asked by nonmathe-
maticians) feel obligated to convince the questioner that number theory also 
can be useful. Sometimes its applications in problems of crystallography and, 
more recently, in cryptography are mentioned. Why it should be necessary to 
point out a " usefulness" in the commonly understood sense for number theory 
is something of a mystery to this reviewer. It appears quite certain that 
Diophantus, or Fermât, or Gauss studied this field of human knowledge 
because of its intrinsic interest and its pecuhar beauty—and they really did not 
care one way, or the other, whether their elegant theorems would, or would not 
have " useful" applications. 

Be that as it may, it turns out that like so many other branches of 
mathematics, developed by the "purest" of mathematicians, also number 


