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CANONICAL MAPPINGS BETWEEN TEICHMÜLLER SPACES1 

BY IRWIN KRA 

Introduction. In an important survey article [BIO] Bers reported on the state 
of knowledge of Teichmüller theory. There has been a lot of progress in the 
field since that time. The purpose of this paper is to summarize the recent 
work in one area of Teichmüller space theory. We will concentrate on the 
hyperbolic properties of Teichmüller spaces, and present as many conse­
quences of this hyperbolicity as we can. The starting point of this study is 
Royden's [Ro] fundamental paper showing that the Teichmüller metric on 
T(p, 0), p > 2, and the hyperbolic (Kobayashi [Ko, pp. 45-46]) metric are 
one and the same. The organization of the material of this paper follows that 
of an earlier joint paper with Clifford Earle [EK1], except that an introduc­
tory section on history and motivation has been added. 

We have neglected completely another area of Teichmüller space theory in 
which a tremendous amount of recent work has contributed greatly to our 
understanding of Riemann surfaces; namely, the study of fibrations and 
boundaries of Teichmüller spaces. I will only mention the people who have 
contributed to developments in this area: Abikoff, Bers, Earle, Hubbard, 
Jjafrgensen, Kerckhoff, Marden, Maskit, Masur, Thurston. 

I am grateful to Bernard Maskit for reading an earlier version of this 
manuscript and for his many helpful suggestions regarding this article, in 
particular, and Kleinian groups, in general; and to Lipman Bers for his 
continual help, encouragement, and interest in all aspects of mathematics. 

0. A short history and the most classical example. 
0.1. The classical theory of moduli of Riemann surfaces originated with 

Riemann's observation that the conformai type of a compact Riemann 
surface of genus p > 1 depends on 3(p - 1) complex parameters, known as 
moduli. Yet, the fact that the space of moduli of compact surfaces of genus 
p > 1 forms a normal complex space was not proven until the early 1950's. 
The key step is passing to a cover of the space of moduli, known as the 
Teichmüller space of genus p, T(p, 0). The space T(p, 0) appears implicitly in 
the continuity arguments of Klein and Poincaré. It was constructed explicitly 
by Fricke [FK] and Fenchel-Nielsen [FN]. Fricke proved that T(p, 0) is a 
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manifold real analytically equivalent to R6p~6. Teichmüller [Tl], [T2] intro­
duced a natural metric on T(p, 0). Ahlfors [Ah3], [Ah6], [Ah7] and Bers [Bl], 
[B5], [B6] showed that T(p, 0) has a natural complex structure, and Royden 
[Ro] completed this circle of ideas by recovering the natural metric from the 
natural complex structure. 

A compact Riemann surface together with a standard system of generators 
for its fundamental group (called a marked surface) determines a point in 
T(p, 0) and all points in the Teichmüller space arise this way. There is a 
natural group of biholomorphic mappings of T(p, 0), the modular group, 
which identifies points in T(p, 0) corresponding to conformally equivalent 
Riemann surfaces. The moduli space is T(p9 0) factored by the modular 
group. 

The model for T(p, 0) is the upper half-plane which can be canonically 
identified with the Teichmüller space for surfaces of genus 1, 71(1, 0). We will 
outline briefly the theory of moduli of compact Riemann surfaces of genus 1 
(elliptic function theory), showing the connections, similarities, and dif­
ferences with the theory of moduli for surfaces of genus/? > 1. 

0.2. It is well known that every compact Riemann surface of genus 1 can be 
constructed as XT = C/GT, where Gr is the lattice generated by 1 and T with 
T G U, the upper half-plane. It is more convenient to view Gr as a group of 
motions of C, generated by the two translations A: ZH>Z + 1 and Br: 
z i-» z + r. It should be remarked that this general uniformization theorem 
for tori does not depend on Koebe's uniformization theorem. To prove the 
uniformization theorem in genus 1, we need only use the more classical 
theorem of Abel (the map from a torus into its Jacobian variety is an 
isomorphism). The points in U form the Teichmüller space of genus 1: 
7X1, 0) « U. 

0.3. In attempting to generalize the above construction to higher genus one 
immediately comes across two problems. The first problem concerns the 
ad-hoc nature of the above procedure (to be discussed in this section); and 
the second, the questions connected with uniformization of surfaces of higher 
genus (see §0.7). 

Let us fix as a base surface the torus corresponding to T = / = V— 1 , 
Xt = C/G,. The group Gt can, of course, be identified with the fundamental 
group of Xt. Consider the space of isomorphisms of G, onto other lattice 
subgroups of Aut C (that is, onto free discrete commutative subgroups of the 
group of automorphisms of C, Aut C). Two isomorphisms Bx and 02 will be 
called equivalent if they differ by an inner automorphism of Aut C. It is easy 
to check that each such isomorphism is equivalent to a unique isomorphism 0 
with 

9(A) = A, 9(Bt) = BT, some T 6 [ / . (0.3.1) 

Thus we see that T(l9 0) could as well have been defined more abstractly as a 
set of equivalence classes on the space of isomorphisms of Gt onto lattice 
subgroups of Aut C. This concept can be used to define the Teichmüller 
spaces T(p,0) for p > 2 (see §1.12). However, in more general settings 
algebraic conditions alone will not suffice to construct deformation spaces. 
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0.4. Every isomorphism of Gt onto GT is induced by an orientation-preserv­
ing homeomorphism of C onto itself. In fact, the homeomorphism can be 
chosen to be quasiconformal and even affine (that is, of the form 

zt->az + bz +c (0.4.1) 

with a, b9 c E C, a ^ 0 and \b/a\ < 1). The whole modern development of 
moduli of Riemann surfaces was initiated by Teichmüller with his study of 
extremal quasiconformal mappings [Tl], [T2]. (Quasiconformal maps will be 
discussed further in §1.2; extremal quasiconformal maps in §4.2.) Quasicon­
formal mappings already appeared in the earlier work of Grötzsch [Gz] and 
Ahlfors [Ahl]. They were introduced in a systematic way, before Teichmüller, 
by Morrey [My] and Lavrentieff [La]. Alternate (equivalent) definitions of 
quasiconformality were studied by Pfluger [Pf] and Ahlfors [Ah2]. (See 
Gehring's review [Ge] for more on the history of quasiconformality.) How­
ever, it was Teichmüller who first noticed the deep connection of quasiconfor­
mal mappings and function theory. The existence theorems for quasiconfor­
mal mappings with prescribed dilatation (Lavrentieff [La], Bojarski [Bo], 
Ahlfors-Bers [AB]) became, during the 1950's and 1960's, an essential tool in 
the study of variation of complex structures on (Riemann) surfaces. For a 
long time Teichmüller's work on extremal quasiconformal mappings was 
(despite its beauty and elegance)2 unnecessary to study moduli (see Bers' 
survey article [BIO]). However, in order to understand the hyperbolic nature 
of T(p, 0), Teichmüller's characterization of extremal quasiconformal map­
pings is essential. 

Using quasiconformal mappings, it is easy to define a metric on T(p, 0). 
The affine mappings of (0.4.1) are extremal quasiconformal mappings, and 
one can define the Teichmüller distance on T(l, 0) as follows. 

Let Xx and X2 be two points in T(l, 0). We represent Xj by a normalized 
(satisfying (0.3.1)) isomorphism Oy. G, -> Aut C. Let ƒ be an affine map of the 
form (0.4.1) that induces the isomorphism 92 ° 9{~l. Define the Teichmüller 
distance r on T(l, 0) by 

r(Xv X2) = p(0, b/a), 

where p is the non-Euclidean (Poincaré) metric on the unit disk. This simple 
construction generalizes directly (see §4.2). 

Quasiconformal mappings have important applications to the study of 
homeomorphisms between surfaces as well as to other branches of mathe­
matics. In this connection see the very interesting papers by Bers [B12], [B13]. 

REMARK. See Earle [E3] for a proof of the existence of quasiconformal 
mappings with prescribed dilatation ]u, for a restricted class of /A. Earle shows 
that for a special class, existence can be obtained as a consequence of the 
Banach space implicit function theorem (one of the few indispensable tools 
for analysis). 

2Two contributing factors might have been the fact that the proofs were not convincing (the 
ideas are all correct, nevertheless-Ahlfors [Ah2] and Bers [B2]), and the fact that the author of 
these beautiful theorems was far from beauty (and grace). 
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0.5. The TeichmüUer space T(p, 0), p > 2, is a generalization of the unit 
disk. The TeichmüUer space is contractible (due to Fricke, TeichmüUer), a 
domain of holomorphy (Bers-Ehrenpreis [BE]), and equivalent to a bounded 
domain (Bers [B6]). It, of course, satisfies a universal mapping property 
(Grothendieck [Gk]). It is tempting to try to translate as many properties of U 
to T(p, 0). The upper half-plane carries a natural Riemannian metric of 
constant negative curvature-the Poincaré metric. The natural metric on 
T(p, 0) is a Finsler metric. For a long time it was thought that the 
TeichmüUer metric has negative curvature. However, the paper claiming to 
prove this result (Kravetz [Kz]) has a serious mistake, discovered by Linch 
[Li]. Recently, Masur [Mrl] has shown that this metric is not of negative 
curvature. Despite this, the TeichmüUer metric tries to behave as if it were of 
negative curvature (see §3.5). 

In many ways the boundaries (there are many!) of TeichmüUer space 
behave like the boundary R u {oo} of U (see for example, Bers [B14], 
Abikoff [Ab]). We will, however, not pursue this line much further (see §0.10). 

0.6. We have seen that the TeichmüUer space T(\9 0) with its canonical 
metric can be identified with the upper half-plane U with its canonical metric 
(the Poincaré metric). The result for arbitrary genus is remarkably similar (see 
§§4.2, 4.7). The space T(l, 0) represents marked tori. To obtain the "space of 
tori" (= the "space of moduli"), one has to identify the points of T(l, 0) » U 
that represent conformally equivalent tori. Using the identifications of §0.2, 
two points r and T' G U represent the same torus if and only if we can find 
an affine map F that is complex analytic and conjugates Gr onto GT/. It is a 
simple exercise to show that such an F exists if and only if 

T' = with a D c d E Z, and ad — be = 1. 
cr 4- a 

Thus the modular group T = SL(2, Z ) /{±7} acts naturally on T(l, 0) to 
produce the space of moduli for surfaces of genus 1. The fact that U/T is a 
manifold (s* C with two distinguished points or C U {oo} with three dis­
tinguished points (of which one is not there)) is an accident of dimension 1. 
However, in general, a discrete group acts analytically on T(p, 0) to produce 
the space of moduli for surfaces of genus/? > 1. In genus one (bigger than 
one) this group can (must) be defined more abstractly in terms of certain 
classes of automorphisms of the base group (see §3). 

The automorphism group of T(l, 0) is, of course, SL(2, R) /{± ƒ}, a real 
Lie group. For higher genus, however, the modular group is (essentially) the 
full group of automorphisms of T(p, 0), p > 2 (see §5.6). The TeichmüUer 
spaces thus provide examples of contractible domains of holomorphy with 
discrete automorphism groups. 

0.7. The complex structure of T(l, 0) is quite natural because every torus is 
uniformized by a subgroup of the (three-dimensional) complex Lie group 
Aut C ^ ( 2 X 2)-upper triangular matrices of the form (g *) with a G C*, 
b G C. However, a surface of genus p > 2 is uniformized by a Fuchsian 
group-a subgroup of SL(2, R)/{ ± / }. Since ££(2, R) is only a real Lie group* 
it is not at all obvious how to give a complex structure to a space of 
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isomorphisms from a fixed Fuchsian group T onto other Fuchsian groups. 
Ahlfors gave T{p, 0) a complex structure by constructing specific local 
coordinates using periods of abelian differentials [Ah3]. 

A very simple and beautiful idea of Bers [B4] provides an alternate 
construction. A Fuchsian group T represents two Riemann surfaces U/T and 
its mirror image (U*/T, where U* is the lower half-plane). If one varies the 
Fuchsian group, each of the surfaces changes-but the change of one com­
pletely controls what happens to the other surface. These changes in complex 
structure of the underlying Riemann surfaces are only real analytic. 

Bers [B4] observed that for any two surfaces Xx and X2 of the same genus 
p > 1, there is a group that algebraically looks just like a Fuchsian group and 
represents precisely the two surfaces Xx and X2. These groups (called quasi-
Fuchsian) act on two (topological) discs in C U {°o}. Bers [B5] constructs the 
TeichmüUer space T(p, 0) by keeping fixed the complex structure of the 
surface produced by the quasi-Fuchsian group acting on one of these two 
disks, and varying the complex structure of the surface produced by the 
action of the group on the other disk. This idea has very wide applicability 
(see §1.2) and is the basis of much of the work on deformation spaces of 
Kleinian groups (and almost all of this paper). 

0.8. The TeichmüUer space 1(1, 0) s (/ represents the space of marked tori. 
To get the surfaces into the picture, we construct various fiber spaces. We 

77"! 

view U X C-> U (irl = projection onto first coordinate) as a fiber space over 
T(l, 0) with fiber over T (TT^^T) = Q the holomorphic universal covering 
space of the torus XT = C/GT. We let Z2 act on U X C by 

(«, m)(r, z) = (T, Z + n + mr), «, m G Z, T G U, z G C. 

The quotient space V(l, 0) = (U X C)/Z2 is a fiber space over U with 
projection 

*: K(l,0)-> 71(1,0) 

induced by tirl. Note that IT~1(T) = XT. 
(As an exercise, let T = (SL(2, Z)/{ ± ƒ }) X Z2 act on U X C by 

(g, n, m)(r, z) = (gr, z + n + mgr), 

g G SL(29 Z ) / { ± / } , n, m G Z, T G U, z G C, 
and compute (U X C)/T.) 

The holomorphic sections s of the map m (that is, holomorphic maps s: 
r ( l , 0) -> K(l, 0) such that m ° s = id) are in canonical correspondence with 
the holomorphic maps ƒ: U -» C (given ƒ, set s(r) = (T, / (T))) , and hence not 
much can be said about sections of m. Note that a section of *n is a choice of a 
point on a torus, with the choice depending holomorphically on moduli. The 
abundance of sections of m is, of course, not surprising since every torus is 
homogeneous (it has a transitive group of conformai automorphisms). It is 
precisely this homogeneity that allows us to identify T(l, 0), the TeichmüUer 
space of tori, with T(l, 1), the TeichmüUer space of once-punctured tori. In 
this setting 

K(l, ! ) ' - ( ! / X Q ' / Z 2 , 
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where 

(U XCy = {(T, Z) G U X C; z =£ n + mr, all n, m E Z}. 

(The reason for the ' will become apparent in §2.3.) The holomorphic sections 
of 7r: V(l, 1)'—»T(1, 1) (are already interesting and) are in canonical corre­
spondence with holomorphic functions/: U —> C such that 

f(r) ¥= T + n + mr, all r E U9 all n, m E Z. (0.8.1) 

Pick any z 0 G C \ { « + mr: n, m E Z}. Then by properly choosing (a, &) E 
R2 \ Z2, /(r) = a + tn will satisfy (0.8.1). Are there any other holomorphic 
functions that satisfy (0.8.1)? The answer is no (Earle [El], for a proof see 
Earle-Kra [EK1]). Despite the classical (elliptic function-theoretic) presen­
tation of the problem, the only proof (in print) relies heavily on TeichmüUer 
space theory (its hyperbolic properties). The question of choosing points 
(holomorphically) on compact surfaces of genus p > 2 has been completely 
solved (most of the times it cannot be done). See §6. 

0.9. We have marked a compact Riemann surface X by choosing a set of 
generators for its fundamental group. We are led this way to TeichmüUer 
space. We can alternately mark a surface by choosing a set of generators for 
the first homology group and obtain Torelli spaces. The Torelli space is 
always a factor space of the TeichmüUer space; these two spaces coincide 
only in genus one (because the fundamental group of a torus is commutative). 
We will discuss (very briefly) the use of homology in moduli problems in §7. 

0.10. The TeichmüUer spaces are generalizations of U, the upper half-plane, 
and the modular groups are generalizations of Fuchsian groups. The recent 
works of Thurston, Masur, Hubbard explore this connection. The modular 
group acts on certain boundary points of TeichmüUer space (Bers [B14], 
Abikoff [Ab], Earle-Marden [EM]). This action is currently under active 
investigation and strengthens the model for TeichmüUer spaces that we have 
been describing. 

At this point we will stop the general discussion and proceed to describe 
more precisely the objects of interest. 

1. Deformation spaces of Kleinian groups. 
1.1. Let G be a group of Mobius transformations (G GPSL(2,C) — 

Mob); that is, a group of self-mappings 

z j_> with a, b,c,dEi C, ad — be = 1, 
cz + a 

of the extended complex planes, C = C u {oo}. The group G acts discontinu-
ously at z E C if the stability subgroup of G at z, 

Gz = {g<EG;gz = z} 

is finite, and there exists a neighborhood D of z such that 

g(D) = D all g E Gz and g ( D ) n / ) = 0 all g E G \ G2. 

The set of discontinuity, ti = ti(G), of G consists of those z G C such that G 
acts discontinuously at z. It is an open G-invariant subset of C. Its comple­
ment, A = A(G), is called the limit set of G. The group G is called Kleinian 
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provided ti ¥=• 0 , and nonelementary provided card A > 2. If G is nonele-
mentary, the A is a perfect, closed subset of C. If G is Kleinian then Q, in 
general, consists of infinitely many components, and Q/ G is a (countable, in 
general) union of Riemann surfaces. 

The components of Ü are also called components of G. Not much is known 
about the structure of Ü/G, unless one makes some further assumptions 
about the structure of G. A fundamental result of Ahlfors [Ah8], known as 
Ahlfors' finiteness theorem, asserts that if G is a finitely-generated Kleinian 
group, then Ü/G is a finite union of Riemann surfaces that are compact, 
except for finitely many missing points, and the canonical projection 
9, -> 2/G is ramified over finitely many points (the ramification points z E fi 
corresponds to the points with nontrivial stabilizers Gz). 

Ahlfors' deep and beautiful result was proved in the sixties, and it is central 
and basic for all subsequent work on Kleinian groups. The proof of the 
finiteness theorem involves the use of (group) cohomology and depends on a 
delicate smoothing operator. 

In general, a component A of Ü is left fixed (as a set) by a subgroup of G. If 
gA = A for all g E G, then A is called an invariant component of G, and G is 
called a function group. The most important function groups are the Fuchsian 
groups; that is, those function groups where A is a disk (or half-plane). 

Throughout the rest of this paper G will denote a finitely-generated 
nonelementary Kleinian group with an invariant component A. In this case 
the limit set A of G is precisely the boundary of A. (For more on the 
elementary properties of Kleinian groups, the reader is referred to Ford's [Fo] 
or Lehner's [Le] book. A proof of Ahlfors' finiteness theorem may be found 
in the author's book [Krl].) 

1.2. Let Lco(G) be the space of Beltrami differentials for G with support in 
A; that is, the closed subspace of L°°(A, Ç) consisting of all /x E L°°(A, Q 
with 

g' 
( M ° s ) - - r = M all g E G . 

We consider each ix E L°°(G) to be defined on all of C with /x|(C \ A) = 0. 
(Every Beltrami differential /x (with arbitrary support in C U {oo}) for an 
arbitrary finitely generated Kleinian group, must vanish on A by a recent 
result of Sullivan [Su].) The set of Beltrami coefficients M(G) for G with 
support in A is an open unit ball in L°°(G). 

A homeomorphism co of C onto itself is normalized if it fixes 0, 1, oo, and is 
/x-conformai if it satisfies the Beltrami equation cof = /xcoz. For each^ /x E 
Af(G), there is a unique normalized /x-conformal automorphism wM of C (see 
Ahlfors-Bers [AB]). Note that each wM is conformai on the interior of C \ A. 

A quasiconformal homeomorphism co is compatible with G (modulo A) if co 
is conformai on the complement of A and 

co o g © co ~l E Mob all g E G. 

A quasiconformal co is compatible with G if and only if co = a ° wM for some 
a E Mob, some /x E M(G). A compatible co induces an isomorphism 0U of G 
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onto the Kleinian group Gw = wGco *, with invariant component <o(A), 
defined by 

0w(g) = <*> ° g o co"1, g G G. 

We say that two compatible quasiconformal maps <o and col are equivalent 
if there exists an a e Mob such that 0Wj = 0a o w. 

The deformation space T(G) is the set of equivalence classes of compatible 
quasiconformal maps. We note that the equivalence class of a quasiconformal 
compatible <o, depends only on the Beltrami coefficient \i of <o. Thus, we have 
a well-defined surjective mapping $: M(G)-> T(G). We give T(G) a topol­
ogy and complex structure by declaring $ to be continuous and holomorphic. 
Every deformation space T(G) contains a distinguished point <E>(0). We call 
this point the origin or zero point of T(G) and denote it by 0. 

It is quite easy to see that for /A, v e Af(G), $(/x) = $ 0 ) if and only if 
H>M|A = w"|A, provided {0, 1, oo} c A.3 We shall introduce the following 
abbreviations 

G» - Gw\ A" - w"(A), 0M - 0W>. 

From now on, we assume that G is normalized so that 0, 1, oo are limit points 
of G. 

(The deformation spaces f(G) can be defined for arbitrary Kleinian 
groups-not just function groups. See, for example, Kra j[Kr2]. The deforma­
tion space f(G) defined above corresponds to the space T(G9 A) of [Kr2].) 

REMARK. The space of Beltrami differentials L°°(G)9 for the group G with 
support in A, projects to a space of Beltrami differentials L°°(A/G) on the 
quotient surface A/G. These projected differentials are bounded (—1, 1)-
forms (that is, /x G L°°(A/G) is an assignment of a bounded function /x to 
each local coordinate z so that fi(z)dz/dz is invariantly defined). 

Similarly (because the norm is independent of local coordinates) M(G) « 
M(A/G). 

1.3. We shall be concerned mostly with two special cases. The most 
important (classical) case is when G is a finitely-generated Fuchsian group of 
the first kind operating on the upper half-plane U. Such groups will always be 
denoted by the letter T; and we will write T(T) for T(T); and call T(T), the 
Teichmiiller space of T. (There is a more general class of Fuchsian groups-
called of the second kind.) If G is a discrete subgroup of Mob and G leaves a 
disk U invariant, then G is (classically) called a Fuchsian group. Such a group 
always acts discontinuously on U. However, U need not be a component of 
ti. According to our definition in §1.1, such a group would not be Fuchsian. 
However, classically it is called a Fuchsian group of the second kind, 
whenever A is a proper subset of the boundary of U. For nonelementary 
Fuchsian groups of the second kind (as a matter of fact, as long as 
card A(G) > 1), fi is connected but not simply connected). 

The importance of these Fuchsian groups is due to the fact that they 
uniformize almost all Riemann surfaces (see §1.7). 

3In [Kr2], we assumed throughout that 0, 1, oo G A. However, we omitted to mention this 
normalization. 
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If T is a finitely-generated Fuchsian group of the first kind, if /i G M(T), 
and if A G Mob, then <o = A ° H>M conjugates T onto P° = coTco'1; the group 
rw is called quasi-Fuchsian. Maskit has shown that every finitely-generated 
Kleinian group with two invariant components (no finitely-generated 
Kleinian group can have more than two invariant components) is quasi-
Fuchsian (see [KM1]). Thus for a non-quasi-Fuchsian function group G, the 
invariant component A is unique. For quasi-Fuchsian groups, there are two 
choices. For the theory to be developed here, the choice of components is not 
material. 

The second of our special cases lies at the other end of the spectrum of 
uniformizations of Riemann surfaces. Let D be a region in C bounded by 2p 
(with p > 2) disjoint simple closed curves Cv C[,. . . , Cp9 CJ. For j = 
1, . . . , /? , let Aj be a Mobius transformation with Aj(D) n D = 0 and 
AJ(CJ) = CJ (such Mobius transformations always exist if Cj and CJ are 
circles or straight lines). Let G be the group generated by Al9. . . , Ap. The 
group G is called a Schottky group. It is a free group on p generators, and if 
we let 

A = U g(D'), 
g^G 

where £>' = Z> u C\ U • • U Cp, then A is the entire region of discontinuity 
of G and A/G represents a closed surface of genus/? > 2. 

Conversely, every finitely-generated, purely loxodromic, free Kleinian 
group is a Schottky group by a theorem of Maskit [Msl]. 

1.4. Let Q(G) denote the Banach space of holomorphic functions <p on A 
with 

(<P ° g)(gf = <P a l l g G G , (1.4.1) 

and norm 

I M I = i / 7 \<p(z)dzA<E\<*>. 
z J JA/G 

Define a natural pairing 

(<P, tio=\ f f <p{z)ii{z)\dz A dz\, <p G Ô(G), /x G L°°(G). 
z J JA/G 

This pairing establishes a canonical isomorphism between the dual space 
Q(G)* of Q(G) and L0O(G)/Q(G)±

9 where 

QiG^ = { ii G L°°(G); (<p, [x)G = 0, all <p G g(G)}. 

THEOREM. The deformation space T(G) has a unique complex analytic 
manifold structure so that the map $ : M(G) —» T(G) is holomorphic with local 
holomorphic sections. The null space of the differential ^ ' ( M ) at p Œ M(G) is 
Q(G^. 

The fact that for Fuchsian groups T, T(T) is a complex manifold is deep 
and fundamental work of Ahlfors and Bers (see Bers [B6]). The extension to 
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the more general situation is more routine (see Bers [B8], Maskit [Ms3], and 
Kra [Kr2]). 

Since Q{G^) is finite dimensional, the previous theorem has a 

COROLLARY. The tangent space to T(G) at $(JU,) is {canonically isomorphic 
to) Ö(GM)*. The cotangent space is Q(G*). 

1.5. By B(G) we will denote the Banach space of bounded quadratic 
differentials on the interior A* of C \ A for the group G; that is, the set of 
holomorphic functions <p on A* satisfying (1.4.1) with norm 

Hvll' = sup{M*)"2|<p(*)|; z e A*} < oo, 

where X(z)\dz\ is the Poincaré metric on A* (each component of A* is 
conformally equivalent to U and, hence, carries a Poincaré metric) of con­
stant negative curvature — 1. 

WARNING. The open set A* may be empty. It is empty for Schottky groups 
and degenerate groups, for example. A finitely-generated nonelementary 
Kleinian group is called degenerate if £2, its region of discontinuity, is 
connected and simply connected. A lot of the mystery about Kleinian groups 
is due to the presence of these objects. Degenerate groups first appear in the 
companion paper of Bers [B9] and Maskit [Ms2]. 

For /x G M(G), let (pM be the Schwarzian derivative of wM|A*. Then /i i-> <pM 

defines a holomorphic mapping of T(G) into B(G). This mapping is always 
locally surjective (as a consequence of Bers [B6]). It is injective if and only if 
dim B(G) — dim Q(G) if and only if G is a quasi-Fuchsian group (Maskit 
[Ms4]). For quasi-Fuchsian groups, the mapping is the Bers embedding of 
T(G) in B(G). The image is always a bounded domain. 

REMARK. AS remarked in §1.4, the fact that T(T), for a Fuchsian group T, is 
a complex manifold is a deep fact. However for T finitely generated of the 
first kind, the manifold structure of T(T) and its embedding as an open subset 
of B(T) follows rather easily from the fact that homeomorphic solutions of 
the Beltrami equation depend holomorphically on parameters. We outline 
below two such proofs. 

FIRST PROOF. 1. The fact that for fixed z G C, M(G) B /i H> W\Z) G C is a 
holomorphic mapping [AB], shows that the Bers embedding is holomorphic 
[B6]. It is easily seen to be one-to-one when G is quasi-Fuchsian [B6]. 

2. A calculation (see [B6]) shows that the derivative of the mapping <b at the 
origin is the linear operator L defined by 

3. If we let Xl be the Poincaré metric on A, then for quasi-Fuchsian groups 
G, 

_6_ r fAi(Q~>q)<ff A « 
2m J JA (£ _ z)4 

is a surjective linear isomorphism of Q(G) onto B(G). After computing 

(£<P)00 = ~-T / I -; > <P e Q(G), z G A*, 
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dimensions, it suffices to show only injectivity of £. This is quite easy, [B6] or 
[B7]. The fact that £ is surjective for the trivial group is a deep result [B6]. 

4. The implicit function theorem now shows that $ maps T(T) biholomor-
phically onto an open subset of B(T) for finitely generated Fuchsian T of the 
first kind, and that the mapping 3>: M(T)->B(T) has local holomorphic 
sections. 

SECOND PROOF. Alternately, Ahlfors-Weill [AW] show by explicit construc­
tion that <$: M(T) -> B(T) covers a neighborhood of the origin. This proves 
that origin is a (finite dimensional) manifold point of T(T). Allowable 
mappings (see §3.1) then show that every point is a manifold point. Invari­
ance of domain can now be used to show that the image of T(T) in B(T) is an 
open set. 

1.6. Let h: U-+ A be a holomorphic universal covering map, and define the 
Fuchsian model T for the action of G on A: 

r = { y G (holomorphic self-maps of U); h ° y = g ° h for some g E G } . 

The above definition leads to an exact sequence of groups and group 
homomorphisms 

{\}->H^T^G->{\}9 

where 9 is defined by 

hoy = 0(y) o h all Y E T, 

and where 

H = kernel of 0 » (fundamental group of A). 

Furthermore, A s U/H, and the canonical projections make the following 
diagram commute. 

U —*—• A 

U/T - ^ - > A/G 

In particular, U/T and A/G are equivalent as Riemann surfaces with 
ramification points. 

Now, the space of Beltrami differentials L°°(G) is canonically isomorphic 
to L°°(A/G) a L°°(U/T). Thus, it is natural to identify L°°(G) with L°°(T). 
The identification is given by the surjective linear isometry 

A*: L°°(T) ^ L^iG) 

defined by 

(h*ix) oh - / i 4 r , M e L°°(r). 
h' 

The mapping h* allows one to construct a mapping between deformation 
spaces 7XT)^ f(G). 

THEOREM. The Teichmuller space T(T) is a holomorphic universal covering 
space of the deformation space T(G). 



154 IRWIN KRA 

For more details and generalizations of the above see the articles in the 
1974 Crash course on Kleinian groups [BK]. 

1.7. Let UT be the set of points in the upper half-plane U which are not 
fixed by any elliptic element of the Fuchsian group T (assumed to be finitely 
generated of the first kind). Then Ur/T is a compact Riemann surface of 
genus/? with n punctures. The pair (p, n) is called the type of T or of UT/T. A 
group of type (p, n) exists if and only if UT/T has negative Euler characteris­
tic; that is, if and only if 

2p - 2 + n > 0. (1.7.1) 

A theorem of Bers-Greenberg [BG] (see also Marden [Mdl] and Earle-Kra 
[EK1]) asserts that TÇT) and T(T') are biholomorphically equivalent whenever 
T and r ' have the same type. We therefore define the Teichmüller space 
T(p, n) as T(r) for some group T of type (p, n). We consider only those types 
(p,n) that satisfy (1.7.1). 

REMARKS. (1) The "excluded" types can be handled by easier and classical 
methods. It is quite easy to prove that one can define Teichmüller spaces for 
these excluded cases that yield 

T(l, 0) a T(h 1), r(0, 2) = r(0, l) = r(0, 0) - a point. 

(2) If T is of type (p, ri), then the elements of Q(T) project to integrable 
holomorphic quadratic differentials on Ur/T; that is, assignments of holo-
morphic functions <p to local coordinates z so that <p(z)dz2 is invariantly 
defined on UT/T. These differentials may have simple poles at the punctures 
of UT/T. By the Riemann-Roch theorem 

dimc Q(T) = 3p - 3 + n. 

(3) For arbitrary G, the mapping h introduced in §1.6 induces an isometric 
isomorphism h^: Q(G)^> Q(T) defined by 

**9 = (<P « h)(hf9 <p e Ô(G). 

Thus we also have computed diniç Q(G). 
(4) Fuchsian groups T of type (/?, n) have a finer numerical invariant. For 

each puncture xy- on Ur/T, let Vj = oo if x} & U/T9 and let Vj = order of 
stability subgroup of a preimage of xj in £/, otherwise. By reordering the n 
punctures we may assume 

2 < vx < v2 < • • • < vn < oo. 

The signature of T is the collection 

(p; * „ . . . , "„)• (1-7.2) 

Further, two Fuchsian groups (finitely generated of the first kind) are 
quasiconformally equivalent if and only if they have the same signature. 

1.8. Let I b e a Riemann surface of type (/?, «). The Teichmüller space 
T(p, n) can be defined completely in terms of the Riemann surface X. Let fy. 
X —» Xjr be a quasiconformal homeomorphism of X onto another Riemann 
surface Xj (necessarily of the same type) for j = 1, 2. We say that f\ is 
equivalent to f2 if there exists a conformai mapping h: XX^>X2 such that 
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/2" ! ° h o ƒ, is homotopic to the identity self-mapping of X. It is not hard to 
see that this set of equivalence classes yields a Teichmüller space T(X). The 
topology and complex structure of T(X) can be defined directly. However, 
the easiest way to prove that T(X) is a complex manifold is to use the 
identification T(UT/T) = T(T); valid for arbitrary (finitely-generated) Fuch-
sian groups (of the first kind). 

REMARK. Since we are dealing with low (real)-dimensional manifolds (two), 
the concepts of homotopy and isotopy agree (see Birman [Bi] and the papers 
quoted there). Thus we could, alternately, require the mapping /2~l <> h ° fx 

introduced previously, to be isotopic to the identity. 
1.9. It is rather easy to verify that, for Schottky groups G and G', the 

deformation spaces T(G) and T(G') are biholomorphically equivalent if and 
only if A/G and A'/ G' have the same genus (the genus of A/G is the number 
of free generators of G). Thus, we define the Schottky space of genus/?, S(p), 
to be the deformation space f(G) for some Schottky group G of genus/? > 2. 

1.10. Let G be generated by TV-elements, gl9 . . . , gN. Any isomorphism 9: 
G -> P£X(2, C) can be viewed as a point 

The group PSL(2, C) acts on PS£(2, Q ^ by conjugation, and the quotient is 
a complex space. A point in T(G) is an equivalence class (modulo conjuga­
tion) of an isomorphism 0 of G into PSX(2, Ç) that satisfies some additional 
(geometric) conditions. Thus we have a well-defined mapping 

f(G) -> PSL(2, C)N/PSL(2, C). 

This mapping is holomorphic and injective. 
1.11. Every point of T(p, 0),p > 2, represents a compact Riemann surface 

X of genus p together with a "marking". This marking is a choice of 
generators for 7rx(X\ the fundamental group of X; hence a choice of 
generators for HY(X)9 the first homology group for X (with integral coeffi­
cients). Thus for each point in T(p9 0) we can construct a canonical basis for 
the holomorphic differentials of the first kind, and also a period matrix. 
Hence we have a mapping of T(p, 0) into period matrices (points in the 
Siegal upper half-space of genus /?). This mapping is holomorphic (see Rauch 
[Ra]). (See also §7 for more details.) 

1.12. The deformation spaces T(G) have been defined in terms of certain 
isomorphisms of G onto other Kleinian groups. An isomorphism 0: G -» G' 
between Kleinian groups is called geometric4 if there exists a quasiconformal 
automorphism/of C such that 

0(g)=f°g°rl a l l g G G . 
It is of great interest to determine necessary and sufficient conditions for an 
isomorphism to be geometric. This question has been investigated by Maskit 
[Ms5] and Marden [Md2], [Md3]. 

4The only difference between a geometric isomorphism and one induced by a compatible 
quasiconformal map is that, in the first case, the quasiconformal map is not required to be 
conformai on the interior of C \ A. 
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2. Forgetful maps. 
2.1. There is a canonical map fk: T(p9 n + k)-+ T(p9 n) for every integer 

k > 1 which corresponds heuristically to "forgetting k punctures". We will 
study this map in some detail. 

Let A" be a Riemann surface of type (p9 n), and let xl9. . . , xk be k distinct 
points on X. Let X' = X \ {xv . . . , xk). Choose holomorphic universal 
covering maps t: U -* X and t'\ U-+ X' with cover groups T and F of types 
(p9 n) and (p, n + k)9 respectively. The inclusion map j : X' -» X lifts to a 
map h: U-+ U which makes the following diagram commute. 

U -jL—>U 

t' \t 

Further, h is a universal cover of V = f " 1 ^ ' ) and induces a surjective 
homomorphism 0: F -> T defined by 

Aoy = 0(y) o . all y e F . 

Using /* we define norm-preserving isomorphisms 

hm: Q(T) -* Q(T>), h*: L°>(T') -* L~(r) 

by the formulae 

h+cp = (<p o /*)(/i')2, ( / i » « h = / ^ ' / Â 7 , <p G Ô(T), jüt G L°°(F). 

These maps are adjoints in the sense that 

(<P, h*ii)T = (h.q>9 / i ) r , <p G Ô(T), /x G L°°(F). 

As before, h* projects to a well-defined holomorphic mapping 

fk:T(T')^T(T). (2.1.1) 

Let jix G M(r') and set v = /i*fx. By its construction fk carries <$(/A) in T(T') to 
$ 0 ) in r ( r ) . Further, there is now a unique holomorphic mapping h which 
makes the following diagram commute. 

U —*—+ U 

vtr w 

As before, we have well-defined mappings h+ and /i*. The differential 
ƒ;(<*>(/*)) is 

£*: L 0 0 (F^ ) / e ( r M ) J - -» L 0 0 ( F ) / Ô ( F ) ± . 

THEOREM. Let fk\ T(T') -> T(T) be the forgetful map. The induced map of 
cotangent spaces is the inclusion map h^ of Q(TV) in S(FM). 

REMARK. The forgetful map fk has a very simple interpretation on the 
Riemann surface level. It is a map ƒ: T(X') -> T(X). A point 9 of T(X') is 
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represented by an equivalence class of quasiconformal homeomorphisms 
co: X' -» X{. Since every quasiconformal map is extendible across punctures, 
co can be viewed as a quasiconformal mapping of X onto another surface. The 
equivalence class of this extended mapping is ƒ(#). 

The induced mapping on cotangent vectors at the origin is indeed the 
inclusion of Q(X) in Q(X'). A similar interpretation is valid at an arbitrary 
point of T(X'). 

2.2. For each JU, G M(G)9 the domain wM(A) depends only on $(/*). We can 
therefore define the Bers fiber space 

F(G) - {(*(/i), z) G f(G) X C; /i G M(G), z G A*1}. 

THEOREM (BERS [Bll]). Let Y be a Fuchsian group of type (p9 n) with no 
elliptic elements. There is a biholomorphic map of T(p, n + 1) onto F(T) which 
identifies the projection 

TT: F(T) -» T(T) (2.2.1) 

onto the first factor with the forgetful map fv 

The space T(p, n + 1) is represented by a torsion-free group F of type 
(p9 n + 1). We use the machinery of the last paragraph to describe the map 
xP: T(T')-*F(T). Let a G U with t(a) = xx. For /x G M(T')9 let *//(/*) -
(®(v), wv(a)\ where v = /**ƒ*. 

2.3. The group G acts discontinuously on F(G) as a group of biholomor­
phic mappings by 

g(O(/x),z) = (0>(M),^(z)), (2.3.1) 

where JU G M(G), z e A ^ G G , and 

g ^ w " = ^ o g. (2.3.2) 

The quotient space V(G) = F(G)/G is a complex manifold, and the natural 
projection F(G) -» ^(G) induces a holomorphic projection 

TT: F ( G ) ^ f ( G ) , 
with 

ir-l(Q(n)) = AVG*1 for each/i G M(G). 

If T is a torsion-free Fuchsian group of type (p, n), then F(T) depends only 
on the type of T and it is called the n-punctured Teichmüller curve and is 
denoted by V(p9 n)'. For each x G T(p9 n), the fiber vr~l(x) in V(p, n)' is a 
Riemann surface of type (p9 n). By Theorem 2.2, T(p, n + 1) is a holomor­
phic universal covering space of V(p9 n)f. The projection of V(p9 n)' onto 
T(p9 n) will be denoted by irf

n. 
If T is of type (p9 n) without parabolic elements, then V(T) is the 

Teichmüller curve (it is independent of the signature of T; that is, it depends 
only on the type of T), and it is denoted by V(p9 n). The corresponding 
projection will be denoted by mn. For each x G T(p9 n)9 the fiber v~l(x) in 
V(p9 n) is a closed Riemann surface of genus p on which n points have been 
distinguished. There clearly is a canonical inclusion V(p9 n)' -» V(p9 n) that 
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makes the following diagram 

V(p, n)' • V(p, n) 

T(p, n) 
commute. 

2.4. There is a map T(p + 1,0)-* T(p, 0) that corresponds to pinching off 
a handle. We proceed to describe this map. 

Let G be a Schottky group on the/? 4- 1 free generators Av . . . , Ap+l with 
region of discontinuity A. We leave it to the reader to identify S(\) with 
{ A e C ; | X | > 1}. 

Assume now that p > 1. Let G0 be the subgroup of G generated by 
AXy . . . , Ap. The region of discontinuity of G0 will be denoted by AQ. Note 
that G0 Ç G, Ao ^ A, but AQ \ A has measure zero. Hence, we can identify 
L°°(G) with a subset of L°°(G0), 

L-(G) - { fi E L~(G0); (M o Ap+Ï) = f i ^ , / ^ , ) } . 

The natural injection M(G) —» M(G0) projects to a surjective holomorphic 
mapping 

/ : f ( G ) - ^ f ( G 0 ) . (2.4.1) 

For JU E M(G), the differential ƒ'(^(M)) *S t n e canonical surjective map 

L^Gn/Q(G")±^L^(GS)/Q(GS)±. 

The dual map on the cotangent level 

®:Q(G$)->Q(G») (2.4.2) 

is the relative Poincaré series defined by 

(0<p)(z) = S <P(gz)g'(zf> z E A", <p E Ô(G£). (2.4.3) 
g6C?"/GJ 

The mapping 0 is injective (because its dual is surjective). 

THEOREM. Let ƒ: f (G)-^ f(G0) 6e the holomorphic map of (2.4.1). The 
induced map on cotangent spaces at 0(/A), fi E M(G)> is the relative Poincaré 
series map of (2.4.2). 

We have constructed a holomorphic map S(p + 1) -> £(/>) that corre­
sponds to squeezing off a handle. Since T(p, 0) is a holomorphic universal 
covering space of S(p), the above theorem together with some algebraic 
topology leads to the 

COROLLARY. For every p > 1, there is a surjective holomorphic map 
T(p + 1, 0) —> T(p, 0) that corresponds to squeezing off a handle. 

2.5. In order to construct a map with one-dimensional fibers (a map: 
T(p + 1, 0) -* T(p9 2), for example) we must either extend the concept of 
deformation spaces (in this section) or study more general function groups 
(next section). Choose n > 1 inequivalent points in A: zv . . . , zn. Introduce a 
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new equivalence relation in M(G): p is equivalent to v if and only if 

w"|(A uAo) = w"|(A u Ao), 

where 

A0=lu{g(Zj);geG}\. 

Denote the corresponding quotient space by the symbol T(G; zl9 . . . , z„). 
This space is a complex analytic manifold whose universal holomorphic 
covering space is biholomorphically equivalent to T(T)9 where T is Fuchsian 
model for action of G on A \ A0. 

If G is a Schottky group of genus p > 1, the prior construction depends 
only on the genus p of G and the number n of points and yields S(p9 n)9 

which is defined up to biholomorphic equivalence. The universal holomorphic 
covering space of S(p9 n) can be identified with T(p9 ri). Of course, S{p9 0) = 
S(p). Returning to the situation of §2.4, we assume that A = Ap+l does not 
fix 0, 1, oo. Let zx and z2 be the attracting and repelling fixed points of A, 
Note that zx and z2 are points of AQXA. We now have a well-defined 
surjective holomorphic mapping 

f(G)-*T(G0;zX9z2)9 

by the formula 
/AH>(jU, W"(ZX)9 W " ( Z 2 » . 

The analysis of the previous section goes through in this situation. We remark 
that the "correct" space of quadratic differentials Q(G0; zl9 Zj) consists of 
functions which are permitted to have simple poles at 

A0= U {*(*>); s e G09j = 1,2}. 

THEOREM. There exists for every p > 1 a holomorphic surjective mapping: 
T(p + 1, 0) -> T(p9 2) that corresponds to squeezing off a handle. 

The fibers of the above map are rather complicated. In particular, we do 
not even know if the fibers are connected. 

2.6. If G is an arbitrary Kleinian group with an invariant component A, and 
Gx is a subgroup with invariant component A! D A, then the restriction 
mapping induces a holomorphic mapping T(G)-> T(GX). For special classes 
of G, (for example, factor subgroups (see Maskit [Ms4] for a definition)), the 
above mapping is quite interesting and leads to another construction of a 
"handle squeezing map" T(p 4- 1, 0) -> T(p9 2). This line of investigation 
(joint work with Maskit) will be persued elsewhere [KM2]. We outline here 
one special case. 

Let T be a torsion free Fuchsian group of type (p9 n)9 n > 2, 2p + n > 2, 
operating on the upper half-plane U. We can construct a function group G 
with simply-connected invariant component A c U that represents a surface 
of type (p + 1, n — 2) by adjoining an element y E Mob to T. The element y 
conjugates a parabolic subgroup corresponding to one puncture onto a 
parabolic subgroup representing a second puncture. We obtain this way a 
surjective map T(p + 1, n — 2) —» T(p9 n). 
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It is an open problem to describe the fibers of these maps as well as the 
relation of these maps to the ones introduced in §2.5. 

2.7. If T is a finitely-generated Fuchsian group of the first kind, then T(T) is 
a domain of holomorphy (Bers-Ehrenpreis [BE]). Hejhal [He] showed that for 
Schottky groups G, T(G) is a domain of holomorphy. The same result also 
holds for arbitrary groups (Kra-Maskit [KM2]). The proofs use Maskit's 
[Ms4] structure theorems for function groups. 

3. Allowable mappings and the modular group. 
3.1. Let 0: G-+G' be a geometric isomorphism (see §1.12) between 

finitely-generated nonelementary Kleinian groups induced by the quasicon-
formal automorphism/: C -» C. The map ƒ induces a biholomorphic map 

f*:M(G)-+M(G') 
(the elements of M(G') are supported on the invariant component A' = /(A) 
of G') by sending the Beltrami coefficient v G M(G) into the ltrami 
coefficient of w" ° / - 1 |A ' . If JU. is the Beltrami coefficient of/, then 

/^w=-^4- (3-u) 
1 - ^ fz 

Formula (3.1.1) shows at once that /" is a biholomorphic mapping. Since f* 
carries equivalent elements of Af(G) into equivalent elements of M(G'), it 
induces an allowable biholomorphic 

0*: T(G)->T(G') 
which depends only on the isomorphism 0, in fact only on the conjugacy class 
of 0 modulo inner automorphisms of G and G' (that is, 0 and i'(g') ° 0 ° i(g)> 
where i(g): G-» G is defined by i(g)y = g ° y ° g"1, define the same al­
lowable map). 

The allowable map 0 sends 0(0) G f (G) into 0(a) G T(G'), where a is the 
Beltrami coefficient of / - 1 , and thus establishes an isometric isomorphism 
between the tangent (and cotangent) space of f(G) at O(0) and the corre­
sponding tangent (and cotangent) space of T(G') at 0(a). 

3.2. We can define the modular group Mod G as the quotient of the group 
of geometric automorphisms induced by quasiconformal maps/that preserve 
A (/A = A) by the normal subgroup of inner automorphisms. (Note that the 
action of Mod G on T(G) is not always effective.) 

The moduli space (or Riemann space) R(G) = J(G)/Mod G is a complex 
normal space (not a manifold) and represents the set of conjugacy classes of 
Kleinian groups quasiconformally equivalent to G (see, for example, Bers 
[BUD. 

3.3. If T is Fuchsian, Mod T depends only on the signature of T. We set 
Mod(/?, n) to be Mod T for a torsion-free group T of type (p, n). 

If X is a surface of type (p, n), then Mod(/>, n) can be identified with the 
group of orientation-preserving automorphisms of X modulo those homotopic 
to the identity. 

The group Mod(/?, n) acts discontinuously on T(p, n) (see, for example, 
Bers [Bll]), and hence (as a particular special case) the Riemann space 
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R(P> n) = T(p, n)/Mod(p, ri) is a normal complex space (Bers [Bll]). 
REMARK. The group Mod(/>, ri) acts effectively on T(p9 ri) except if the type 

(p, ri) is exceptional', that is, the type appears in the following short list: (0, 3), 
(0,4), (1,1), (1,2) and (2,0). 

3.4. The group of geometric automorphisms of G induced by quasiconfor-
mal self-maps that preserve A is usually denoted by the symbol mod G. We 
clearly have the following relations 

G c mod G, Mod G - mod G/G. 

The group mod G acts as a group of biholomorphic automorphisms of F(G) 
as follows. If 9 G mod G is induced by the quasiconformal map/, then 

*(*(/»), z) -(*O0,f), 
where JU, G M(G), z G wM(A), v = Beltrami coefficient of wM ° ƒ _ 1 , and 

f = V V " o / o ( W M ) " 1 ( Z ) . 

The action of mod G on F(G) is always effective. The action of the subgroup 
G of mod G coincides with the action of G described in §2.3 by equations 
(2.3.1) and (2.3.2). 

The action of mod G on F(G) induces an action of mod G on V(G) = 
F(G)/G. The group G acts trivially on V(G). Hence we have actually an 
action of Mod G on V(G). This action is always effective, and it motivates 
the definition of the modular group. 

3.5. Let H be a finite subgroup of Mod(/?, ri). The fixed point set T(p9 ri)H 

= {t G T(p, ri); ht = t all h G H) is again a Teichmuller space T(p\ n') 
provided (see §6.11) that it is nonempty [Kz]. Kravetz [Kz] claimed that this 
set is nonempty for all finite H. The proof in [Kz] has a gap. However, the 
arguments of that paper for the cyclic case show that the fixed point set is 
nonempty whenever H is a solvable group. 

Quite recently S. Kerckhoff [Ke] has announced a proof that the fixed point 
set is always nonempty. His proof uses Thurston's [Th] theory of earthquakes. 

4. Metrics on deformation spaces. 
4.1. If <o: C -> C is a /x-conformal mapping, its maximal dilatation K(u>) is 

given by 

v( A 1 + 11 MIL 

The Teichmuller metric on M(G) is defined by 

d(li9 v) =\ log/^w" o (wvyl). 

This metric d is complete and it induces the same topology as the L°°-norm. 
It is the non-Euclidean version of the L00-metric. The Teichmuller metric on 
T(G) is the quotient metric of d 

T(*(ftj), $(*>o)) = inf{rf(*i, v); /i, v G M{G\ 

* ( / i ) - * ( f i o ) , * W - * ( ^ o ) } -
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REMARK. The deformation space f(G) is the quotient of some Teichmüller 
space T(T) by a fixed point free subgroup of Mod T. The Teichmüller metric 
onf(G) is the quotient metric of the Teichmüller metric on r(T). 

4.2. A Beltrami coefficient /x G M(G) is called extremal if and only if 

T ( * ( 0 ) , * ( , » ) ) - < Q , , i ) . 

Teichmuller's theorem (see Ahlfors [Ah2] or Bers [B2]) states that if /A is 
extremal, then /A is a Teichmüller differential; that is, JU, = 0 or jüt = Arç>/|<p|, 
k G R, 0 < k < 1, <p G Q(G), <p ^ 0. If A is simply connected (for example, 
if we are dealing with Fuchsian groups), then every Teichmüller differential is 
extremal and each v G M(G) is equivalent to exactly one Teichmüller dif­
ferential. It follows easily from this result that for T Fuchsian of type (/?, n), 
T(T) is homeomorphic to Q(T) a c3p~3+n. 

4.3. Consider a Fuchsian group T (including the trivial group and groups of 
the second kind-as well as infinitely-generated groups) operating on the 
upper half-plane U. Two elements /A, v G M(T) are called Y-equivalent if and 
only if w"|R = w"\R (equivalent^ if and only if w*\U* - w9\U*). Here R is 
the real axis and U* is the lower half-plane. 

If T is of the first kind, then the concepts of T-equivalence-and equiva­
lence (as introduced in §1.2) agree. For groups of the second kind (including 
the trivial group), T-equivalence implies equivalence, but not conversely. 

An element /A G M(T) is T-extremal if and only if || / A ^ < H^H^ all 
v G M(T) such that v is T-equivalent to v. (Again, if T is finitely generated of 
the first kind, then ii is T-extremal if and only if ii is extremal.) A Beltrami 
coefficient fi G M(T) is T-extremal (Hamilton [Hm], Reich-Strebel [RS], and 
Strebel [Stl]) if and only if /A satisfies the Hamilton condition; that is, 

II MIL = *up{ \\j j v r tiz)<p(z)dz A dz\; <p G Q(T)9 \\<p\\ = 1 J. 

The question of which Beltrami coefficients are the unique extremals in 
their equivalence classes is under active investigation as is a related question 
to be discussed later. 

Let Tr be a subgroup of T. Then we can ask: 
If fi G M(T) is T-extremal, when is it T'-extremaH 
If T' is of finite index in T, then the answer is (trivially) always yes. 

Examples of /A G M(T), T finitely generated of the first kind, where /A is 
T-extremal but not {l}-extremal (extremal for the trivial group) have been 
obtained by Strebel [St2]. This question is intimately related to determining 
the norm of the Poincaré series operator 

e:Ö(0})->ö(T), 
defined as in (2.4.3) by 

(0<p)(z) = 2 V{gz)*{z)\ zŒU,<p<E 6({1}). 
ger 

If for a given group T, the (operator) norm of 0, ||00||, is less than one, then 
every O ^ / i E M(T) which is T-extremal cannot be {l}-extremal. 
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Several people are currently trying to determine ||0||-by direct methods as 
well and through the connection with quasiconformal mappings. 

4.4. The TeichmüUer metrics d and r are both distance functions associated 
with Finsler structures. The Finsler structure a on the tangent bundle 
M(G) X L°°(G) of M(G) is defined by 

a(fi,v) = H E M{G\ v E L°°(G). 
i -M 2 IL 

(The norm || • H^ is the L°°-norm.) The induced distance is the TeichmüUer 
metric d (Earle-Eells [EE]). The Finsler structure ft on the tangent bundle of 
T(G) is the quotient of a; that is, 

£($(/*), V(ii)v) = inf{a(/x, v + A); $'(/x)A - 0}. 

One must check that (3 is well defined (quite easy) and that /? induces the 
TeichmüUer metric T on f(G) (O'Byrne [O]). 

Since a(0, •) is the usual norm on L°°(G), the quotient norm /?($(0), •) on 
the tangent space Q(G)* is also the usual norm, conjugate to the Z^-norm on 
Q(G). 

4.5. The Kobayashi (or hyperbolic) pseudo-metric [Ko, pp. 45-56] on a 
complex manifold M is the largest pseudo-metric k on M such that 

A:(/(z1),/(z2))<p(z1,z2) 

for all holomorphic maps ƒ of the unit disk into M and for all zv z2 in the unit 
disk. Here p is the Poincaré metric on the unit disk 

p(zv z2) = tanh - 1 

1 - zxz2 

The Carathéodory pseudo-metric [Ko, pp. 49-53] on M is the smallest 
pseudo-metric c on M such that 

p(f(xi)J(x2)) < c(xl9x2) 

for all holomorphic mappings of M into the unit disk and all xv x2 in M. 
The classical Schwarz-Pick lemma shows that c < k. Since both c and k are 

intrinsically defined, all biholomorphic maps are isometries in these two 
metrics. 

4.6. The allowable mappings between TeichmüUer spaces are isometries in 
the TeichmüUer metrics (by formula (3.1.1)) and in the Kobayashi and 
Carathéodory metrics (by the intrinsic nature of these metrics). For /x G 
M (G), g i ^ w M o g o ( w ' l ) ~ 1 is a geometric isomorphism 9 of G onto GM. 
Since 0*~l: ^(G^) -» f(G) sends 0(a) onto 0(0) (where a = Beltrami coeffi­
cient of (w'*)-1), we see that in all calculations of distances between points of 
a deformation space (or the space of Beltrami coefficients), we may take one 
of the points to be the origin. Further, if we consider, for example, a Fuchsian 
group T, and an arbitrary point x e T(T), then an allowable map 0* takes 
T(T) onto another TeichmüUer space T(T') with 0*(x) = origin in T(T'). 

4.7. The Hahn-Banach theorem along with the considerations of the 
previous paragraph, show that c = k = d on M(G). The fact that r is the 



164 IRWIN KRA 

quotient metric of d shows that 

c < k < T on f(G). (4.7.1) 

Teichmuller's theorem shows that for a Fuchsian group T and <p E Ô(T), 
<p ^ 0, z h*<J>(z<p/|<p|) is an isometric mapping of the unit disk into the 
Teichmüller space T(T) with the r-metric. It is very tempting to 

CONJECTURE. On T(p, n\ c = k » T. 
To establish this conjecture, one has to produce for fixed <p E Q(T), <p ^ 0, 

a holomorphic function/: T(^, n) = T(T) -» (unit disk) so that 

bl zo-rr ) * kol for s o m e zo * °> kol < *• 
| \ m/| 

This can be done if, for example, n = 0 and <p has only even order zeros (Kra 
[Kr5]). One can also obtain some other qualitative results about the metric c 
(Earle [E2], Krushkal [Ku], Kra [Kr4]); for example, it is complete. However, 
the conjecture is still an open problem. 

Positive evidence towards the conjecture is provided by the following 
beautiful and important 

THEOREM (ROYDEN [RO]). The Kobayashi metric of T(G) is the Teichmüller 
metric. In fact, 

r(xlf x2) = inf {p(zj, z2); ƒ: (unit disk) -» T(G) is 

holomorphic,f(zj) = xJ9j = 1, 2}. 

Royden [Ro] only proved the theorem for the Teichmüller spaces T(p, 0), 
p > 2. The result for T(p, n) can be obtained by realizing that all the 
arguments used carry over with no change to the more general situation. The 
extension can, however, also be obtained by the following simple argument 
that is useful in many other situations. Represent T(p, n) by T(T) where T has 
no parabolic elements. By Selberg's [Se] theorem, T has a fixed point free 
normal subgroup F of finite index. Now T(T') represents T(p\ 0) for some 
p' > 2. The natural injective holomorphic map /: T(T) -» 7(F) is distance 
nonincreasing in the Kobayashi metric and distance preserving in the 
Teichmüller metric. Thus, for all xv x2 E T(T), 

T(X19 X2) - T(/(X,), i(x2)) = k(i(xx), i(x2)) < k(xl9 x2). 

This inequality combined with (4.7.1) yields the required extension. Since 
both the Kobayashi and Teichmüller metrics project to factor spaces (ob­
tained by actions of fixed point free discrete groups), it is easy to extend the 
theorem to f(G) (see Gentilesco [Gn]). 

COROLLARY 1. Iff: T(G) -* f(G') is holomorphic then 

*(Axi),f(xj) < r(xl9 x2) allxl9 x2 E f(G). 

COROLLARY 2. Iff: f (G) -> f (G') is biholomorphic, then f is an isometry. 

Since r is the metric induced by the Finsler structure /?, Corollary 1 has the 
following infinitesimal version. 
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COROLLARY 3. A holomorphic mapping f : T(G) -> T(G') cannot increase the 
^-length of any vector. 

Since the dual metric on the cotangent bundle is well understood, we also 
have 

COROLLARY 4. Let F: f(G)-> f(G') be holomorphic.^ Let x e f(G) be 
represented by the Kleinian group Gv and let y = f(x) G T(G') be represented 
by the Kleinian group G2. Let L: Q(G2) -> ô(^i) oe tne maP induced between 
the cotangent space to T(G') at y and the cotangent space to f(G) at x. Then 

\\IAP\\ < \\<p\\ all<pBQ(G2). 

REMARK. The above considerations also show that it suffices to establish 
the conjecture only for T(p9 0),p > 2. 

4.8. Corollary 4 becomes extremely useful when combined with very precise 
information about the smoothness of the unit sphere in 0(G). The following 
lemma, which appeared in Earle-Kra [EK1], is a straightforward generaliza­
tion of a result of Royden [Ro, Lemma 1]. 

Let <p and \p be L ̂ functions on the unit disk A, holomorphic and nonzero 
for z ^ O , and bounded except possibly in a neighborhood of z = 0. Let 

v = ordQ<p, jüi = ord^ 

(note that /i, v > -1). Define for real t 

At)=fj\<p{z) + t*(z)\\dz/\dz\. 

LEMMA. The function f is a differentiate function oft near t = 0, and 

f'{0) = ƒ JT Re[,Kz)ç;(z)/|<p(z)|]|<fe A dz\. 

Furthermore, if fi > (p — l ) /2, then f has a second derivative at t — 0 given by 

/"(0) = ƒ / j ^ ) | - 3 [ I m ^(zMz)]2\dz A dz\. 

Ifn<(p- l ) /2, then 

/ ( 0 = / ( 0 ) + <f(0) + ce(0 + o(e(/)) 
with c > 0, where 

e(t) - *2log(l/|/|) ifv^lii + X 

. |,|i+[(2+M)/(„-M)] ifv>2n + 2. 

REMARK. The previous lemma shows that the Lx-metric on the cotangent 
space (with the zero section removed) is of class Cl but not C2. Therefore, the 
/̂ -metric (the Finsler structure on the tangent space dual to the L ̂ metric on 
the cotangent space) is also C l (see Royden [Ro]). Earle [E4] has shown that 
the TeichmüUer metric r (the integrated form of the ^-metric) is also C l off 
the diagonal. 

4.9. We must also describe some metrics on the fiber spaces V(p, n)'. 
Again, it is easiest to describe the metrics on the cotangent level. The 
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Kobayashi metric behaves well under covering mappings, Kobayashi [Ko, p. 
48]. Since we know the holomorphic universal covering space of V(p, n)' to 
be T(p9 n + 1), we easily arrive at 

PROPOSITION (EARLE-KRA [EK3]). Let *n'n\ V(p, ri)' -» T(p, n) be the punc­
tured Teichmüller curve of type (p, n\ 2p + n > 2. Let x0 E V(p, n)' and 
r0 = ir'n(x0) G T(p, n). Let X = m'~ 1(T0). Then the cotangent space to T(p, n) 
at r0 is Q(X), and the cotangent space to V(p, n)' at x0 is Q(X \ {x0}). The 
map of cotangent spaces induced by m'n is the inclusion of Q(X) in Q(X \ {x0}). 
Further, the Finsler metric on V(p, nj induced by the norm 

\\<p\\=\SxWl <peQ(X\{x0})9 

is the Kobayashi metric on V(p, n)'. 

PROBLEM. Describe the Kobayashi metric on V(p, n). (The problem is open 
for n > 0.) 

4.10. The Teichmüller metric on T(p9 n) is a complete metric invariant 
under the modular group Mod(/?, «). As a domain in complex number space, 
T(p, n) also carries a Bergmann metric (see for example, [KO, pp. 17-19]), 
that is also invariant under Mod(/?, n). The Teichmüller metric is known not 
to be Hermitian. Because the Carathéodory metric is complete, so is the 
Bergman metric (Hahn [Hal] and [Ha2]). It is also Kahlerian. 

There also exists another Hermitian metric on T(p, n) invariant under 
Mod(/?, n), the so called Weil-Petersson metric. This is the metric induced by 
the Weil-Petersson inner product. 

Let T(p, n) = T(T). Then the Weil-Petersson metric at $(/*), /A G M(T), is 
induced by the Hermitian inner product 

<*>,*> - i f ( \-2(z)<p(z)W)\dz A dz\, 

on ÔÇT**). Here X^ is the Poincaré metric on £/M. 
It was shown (for n — 0) that this metric is Kahlerian (Weil [We], Ahlfors 

[Ah4]), that holomorphic sections have negative curvature (Ahlfors [Ah5]), 
and that there is a constant cpn such that the Weil-Petersson distance on 
T(p9 n) does not exceed cpn times the Teichmüller distance (Linch [Li]). It 
was conjectured (Bers [BIO]) that the Weil-Petersson metric agrees with the 
Bergman metric and is, hence, complete. Wolpert [Wo] and Chu [C] proved 
that the Weil-Petersson metric is not complete (for n — 0). Further, Masur 
[Mr2] showed that the Weil-Petersson metric can be extended to T(p, 0) with 
all its boundary spaces, and that it projects to a complete metric on the 
compactified moduli space. 

5. Maps between Teichmüller spaces. 
5.1. We have already remarked that an inclusion of Fuchsian groups 

T *+ T' induces an isometric embedding of T(T') in T(T). Hence, T(T') -
T(r) if and only if dim T(T') = dim T(T). This phenomenon occurs in a few 
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cases (Greenberg [Gr] or Singerman [Si]) and leads to three isomorphisms, 

r(2, o) « r(o, 6), r(i, 2) = r(o, 5), r(i, 1) a r(o, 4). 

5.2. The fact that Mod(p9 «) acts discontinuously on T(p9 n) has as a 
consequence the following 

LEMMA. Let 9: T(p9 n) -» T(p9 n) be biholomorphic. If f or each x G T(p9 n) 
there exists a yx G Mod(p9 n) such that 9(x) = yx(x), then 9 G Mod(p9 «). 

The lemma gets its value from the well-known fact that x9 y EL T(p9 n) 
represent conformally equivalent Riemann surfaces if and only if there exists 
a y G Mod(/?, n) such that y(x) = y. Thus, to prove that an automorphism 9 
of T(p, n) is an element of the modular group, it suffices to show that for 
each x G T(p, n)9 0(x) represents a Riemann surface conformally equivalent 
to the surface represented by x. 

5.3. Our aim is to describe Aut T(p9 n), the group of holomorphic self-map­
pings of the Teichmüller space T(p, n). There is another related problem: to 
describe Aut V(p, n). This turns out to be a rather simple problem. Consider 
the projection 

V V(p, n)-* T(p, n). 

Let ƒ G Aut V(p, n). For x G T(p, n), 

«H°f:v-l(x)->7Xp9n) 

is a holomorphic function from a compact Riemann surface into a bounded 
domain. Hence, f(ir~l(x)) = <n~\9(x)) for some 9 G Mod(p, «). We have 
seen in §3.4 how to extend the action of Mod(p9 n) on T(p, n) to an action on 
V(p, n) that commutes with the projection vrn. It follows that ƒ G Mod(/?, n). 
For details see Duma [D]. 

The description of Aut F(T) is probably obtainable by methods to be 
described later (although this has not been done yet). If T is a torsion free 
Fuchsian group of type (p9 n\ then F(T) is isomorphic to T(p9 n + 1) (Bers 
[Bll]) and hence Aut(F(r)) is known. In general (if T has torsion), F(T) is not 
isomorphic to a Teichmüller space (Earle-Kra [EK1]), and thus it is conceiva­
ble that interesting new groups will appear in a description of Aut F(T). 

5.4. Let S be a Riemann surface of type (/?, n). We have seen that 
Mod(/?, n) is the group of sense-preserving homeomorphisms of S onto itself 
modulo those nomotopic to the identity. The extended modular group 
Mod(/?, ri)~ is the group of all homeomorphisms of S onto itself modulo 
those homotopic to the identity. The group Mod(/>, ri)~ acts as a group of 
biholomorphic and antiholomorphic isometries of T(p, n). The action is an 
obvious extension of the action of Mod(/?, n) discussed in §3.2. Clearly 
Mod(/?, n)~/Mod(p, n) a Z2. Thus Mod(/?, ri)~ acts discontinuously on 
T(p9 n). (It is quite useful to think of Mod(/?, «)~ as Mod(p9 n) extended by 
an element of order 2 that sends each Riemann surface to its mirror image.) 

5.5. It is slightly surprising that one needs no smoothness assumption on an 
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isometry to obtain the following 

THEOREM (EARLE-KRA [EK2]). Let T(p, n) and T(p\ n') be two Teichmüller 
spaces with 2p + n > 4 and 2p' + n' > 4. If U is a domain in T(p, n) and 
ƒ:£ƒ-* T(p\ ri) is an isometry in the Teichmüller metric with open range, then 
(p> n) = (/>', n') and f is the restriction to U of an element of the extended 
modular group Mod(/?, n)~. Thus, f is either holomorphic or conjugate holomor-
phic. 

The theorem has many easy consequences. 

COROLLARY 1. Every isometry of an open connected subset of T(p, n) onto an 
open subset of T(p\ n') is the restriction of a global surjective isometry. 

Here and in the next corollary, we assume only that 2p + n > 2 and 
2p' + n' > 2. 

COROLLARY 2. If T(p, n) and T(p', n') are locally isometric at even one 
point, then T(p, n) is biholomorphically equivalent to T(p', n'). 

In the next corollary, we let Isom T(p, n) be the group of isometries of 
T(p9 n) onto itself. 

COROLLARY 3. We have 

Isom T(p, n) = Mod(p, n)~ provided 2p + n > 4, 
Isom T(2, 0) s Mod(0, 6)~ » Mod(2, 0)~/Z2, 
Isom T(l, 2) s Mod(0, 5)~, 
Isom 71(1, 1) « Isom 7(0, 4) a Mobj^, and 

Isom 7X0, 3) - {id}. 

In the above, Mob^ stands for the extended real Mobius group; that is, the 
mappings of the upper half-plane of the form 

az + b 
z H-* —:, a9b,c,d G R, ad - be = 1, 

cz + a 
az +b , ^ 

z h* —: , a,b,c,d e R, ad - be - - 1 . 
cz +d 

5.6. Since every biholomorphic map between Teichmüller spaces is an 
isometry in the Teichmüller metric (by Royden's [Ro] theorem (4.7, above)), 
the previous result has the following consequences. In the first theorem 
Aut T(p, n) denotes, as before, the group of biholomorphic self-maps of 
T(p, n). 

THEOREM (ROYDEN [RO]). We have 
Aut T(p, n) = Mod(/7, n) provided 2p + n > 4, 
Aut T(2, 0) ^ Mod(0, 6) a Mod(2, 0)/Z2, 
Aut T(l, 2) s Mod(0, 5), 
Aut r(l , 1) s Aut r(0, 4) s MobR, and 
Aut 7X0, 3) - {id}. 
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We have seen that the Teichmüller space T(p, ri) is a holomorphic covering 
space of the moduli space R(p, ri). Are there any naturally defined complex 
spaces that are covered by R(p, rip. One way to obtain such a space is to 
factor T(p, ri) by a group T with Mod(p, ri) Ç T c Aut T(p, ri). Royden's 
theorem shows that such groups T do not exist in general. 

There are only a finite number of Teichmüller spaces of a given dimension. 
The classification of these spaces is given by the following 

THEOREM (PATTERSON [Pa]). If T(p, ri) is biholomorphicalfy equivalent to 
T(p', ri) andlp + n> 4 and 2p' + ri > 4, then (p, n) - (/?', n'). 

5.7. To prove Theorem 5.5, let ƒ be an isometry from a domain U in T(p, n) 
onto a domain U' in T(p', ri). Since T(p, n) is biholomorphically equivalent 
(§1.5) to a bounded domain in c3/,~3+w, and the Teichmüller metric is 
induced from a Finsler structure, the Teichmüller distance and the Euclidean 
distance (coming from the usual norm on c3/,"3+w) are locally Lipschitz with 
respect to each other. Hence the map ƒ is locally Lipschitz, viewed as a map 
from an open set in c3p~3+n into c3p~3+n. By the Rademacher-Stepanov 
theorem (see, for example, Vâisàlà [V, p. 97] or Fédérer [Fe, p. 216]), ƒ is 
differentiable almost everywhere. 

Let ƒ be differentiable at x e U. Then ƒ induces a R-linear isometry 
between the cotangent space to T(p, n) at x and the cotangent space to 
T(p', ri) at f(x). If we could show (see §5.2) that this implies that x and f(x) 
represent either conformally equivalent or anticonformally equivalent Rie-
mann surfaces, we would be done by Lemma 5.2 (which can be generalized to 
apply to isometries and elements of the extended modular group). 

5.8. To study isometries between integrable holomorphic quadratic dif­
ferentials with Z^-norm, we make use of Lemma 4.8 and establish the 
following results. 

PROPOSITION (EARLE-KRA [EK2]). Let X and X' be Riemann surfaces of type 
(p, n) and (p', n')9 respectively. Assume 2p + n > 4 and 2p' + n' > 4. 

(a) If A : Q(X) -» Q(X') is a surjective R-linear isometry, then A is either 
C- linear or conjugate C-linear. 

(b) Further, (p, n) = (/?', ri). 

The proposition when combined with the following theorem completes this 
circle of ideas. 

THEOREM (ROYDEN [RO], EARLE-KRA [EK1]). Let X and X' be Riemann 
surfaces of finite type (p, ri) and (p', ri) with 2p 4* n > 4 and 2p' + ri > 4. 
Then every C-linear isometry A: Q(X)-+ Q(X') is of the form A(<p) = af*<p, 
where a G C, \a\ = 1, ƒ: X' -» X is a conformai map, andf*y is the pullback of 
<fbyf. 

The theorem shows that the only isometries between spaces of integrable 
holomorphic quadratic differentials are the ones arising quite naturally. 

5.9. The prior results can now be generalized to the deformation spaces 
T(G) and their generalizations. One can show (see Gentilesco [Gn]) that we 
have the following result. 
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THEOREM. The Teichmüller spaces T(p9 n) are not biholomorphically equiva­
lent to products of lower-dimensional Teichmüller spaces T(pv nx) X T(p2, n^) 
for all (p9 n) with 2p + n — 2 > 0. 

6. Sections of families of closed surfaces. 
6.1. We return to the Teichmüller curve *nn\ V(p9 n) —> T(p9 n) represented 

by a concrete Fuchsian group T without parabolic elements 

TT: F ( r ) - > r ( r ) . (6.1.1) 

If z0 G U is a fixed point of y G T, then for all JU. G M(T)9 WM(ZQ) is the 
corresponding fixed point in the fiber w\U) in F(T) of the element yM G P , 
The map 

« ( ^ ( « M . w ' W ) (6.1.2) 
is a well-defined holomorphic section of (2.2.1), and it projects to a section of 
(6.1.1). These are the so-called canonical holomorphic sections 

sy. T(p9 n) -> V(p, n). 

It is quite easy to see that 
n 

V(p,n)'= V(p,n)\ (J Sj(T(p9n)). 

6.2. There are a few obvious sections of 

< : V(p9n)'->T(p9n). (6.2.1) 

Assume T has no elliptic elements and that it has type (2, 0) or (1, 2). Then 
(as we have already remarked in §5.1), there is a group F which contains T as 
a subgroup of index two. Further, T(T') = T(T). Then F(T') - F(T), and 
formula (6.1.2) produces sections of *n'n. These are the Weierstrass sections. 

THEOREM (HUBBARD [Hul] AND [HU2], EARLE-KRA [EK1]). (a) If 

dim T(p9 n) > 1, the only holomorphic sections of (6.2.1) are the Weierstrass 
sections, which occur for (p9 n) = (2, 0) or (1, 2). 

(b) If dim T(p9 n) < 1, then for each x E K(/?, «)' f/iere is a unique holomor­
phic section s of (6.2.1) with s(7r'n(x)) = x. 

6.3. Represent T(p9 n) by r(T), with T fixed point free. By Teichmuller's 
theorem, T(p, n) is contractible. Thus, every section of (6.1.1) lifts to the 
universal covering space T(p9 n + 1) of V(p9 n)' (which can be represented 
by T(T')9 with F fixed point free) producing a section s of the projection 
ƒ, = 7T of (2.1.1). Further, we may choose T and F so that .s(O) = 0. The map 
ƒ: T(F) -> r ( r ' ) defined by ƒ == s ° TT is holomorphic, fixes zero, and satisfies 
ƒ = ƒ o ƒ. Let P: 2 (F) -> Q(T') be the induced linear map on cotangent 
vectors to T(T') at zero. Then, 

P2 = P, (6.3.1) 

IIPII < 1, (6.3.2) 
and 

range P = range 7^(0)* = g(T). (6.3.3) 
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6.4. The proof of Theorem 6.2 depends almost entirely on studying the 
projections P of §6.3, and showing that, in general, such a P cannot exist. 
Such projections are best studied on the Riemann surfaces. Let X be a surface 
of type (/?, n) and let X' = X \ {x0} where x0 G X. Thus, X' has type 
(p, n + 1). We can, of course, choose X and X' so that X * U/T and 
A" = U/T', and hence, g ( * ) = Q(T)9 Q(X') = gCO- We now have 
Q(X) °* ô(^')> a n c l w e n a v e already seen in §2.1 that the range of TT'(O)* of 
§6.3 can be identified with Q(X). Hence, we can view P as a projection 
P:Q(X')-»Q(X). 

LEMMA. There is, at most, one P: Q(X') -> Q(X) satisfying (6.3.1)-(6.3.3). 

6.5. In a few instances, we can actually produce such a projection. Let X be 
a Riemann surface of type (2, 0) or (1, 2), and lety: X -+ X be the "hyper-
elliptic" involution on X. Let x0 G X be a fixed point of j . Then it is well 
known thaty*<p = <p for all <p G £(*)> whereas for <p G g ( * ' ) \ Q(X),j*<p = 
-<p + \p for some t// G Q(X). Thus, we define P = \{I + y*), where / is the 
identity map. Note that P satisfies (6.3.1) because j * = ƒ on Q(X). Since 
||jr|| = ||y*|| = 1, | |P| | = 1. Finally, (6.3.3) is obvious. 

PROPOSITION. If dim Q(X) > 2, then there are no projections 
P: Q(X') -» Q(X) which satisfy (6.3.1)-(6.3.3) except in the situations described 
previously. 

The proposition is proven by the use of Lemma 4.8, relying on precise 
knowledge about the structure of the divisors of zeros and poles of elements 
of Q(X'). See, for example, Earle-Kra [EK1]. 

REMARK. See [EK1] for a proof of Theorem 6.2(b) which was announced 
previously by Earle [El]. The reformulation of this special case was discussed 
in §0.8. 

6.6. There is an intrinsic description of the Weierstrass sections of §6.2. The 
fiber space F(2, n) has a unique involution / that commutes with the 
projection <nn\ V(2, n) -> T(2, n). The restriction of / to a fiber of F(2, n) is 
the hyperelliptic involution y of the fiber, discussed in §6.5 (recall that each 
surface of genus two is hyperelliptic). The fixed point set of / consists of 6 
connected, closed, complex submanifolds of K(2, n). The restriction of mn to 
each of these submanifolds is biholomorphic onto T(2, n); for n = 0, its 
inverse is one of the Weierstrass sections previously defined. In general 
(n > 0), these will also be called Weierstrass sections. 

There is, of course, no canonical involution on F(l, «). However, on any 
torus there exists a unique involution taking a prescribed point onto another 
prescribed point. Hence K(l, 2)' has a canonical involution that once again 
selects the "Weierstrass points". 

6.7. The prior considerations have provided a complete description of the 
holomorphic sections of the punctured TeichmüUer curve. For the case of the 
TeichmüUer curve we have 

THEOREM (EARLE-KRA [EK3]). The TeichmüUer curve mn\ V(p9 n) -> T(p, n) 
has exactly n holomorphic sections if p > 3 and exactly 2n + 6 sections if 
P-2. 
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The n sections for/? > 3 are the canonical sections. For/? = 2, there are the 
six Weierstrass sections described in §6.6. In addition, there are the canonical 
sections sl9 . . . , sn and J ° sl9 . . . 9 J ° sn, where / is the involution described 
in §6.6. 

6.8. The proof of Theorem 6.7 proceeds in a slightly indirect fashion 
because we do not have a description of the Kobayashi metric on V(p9 n) for 
n > 0 (we do not know its universal holomorphic covering space, for exam­
ple). 

However, we do know the Kobayashi metric on V(p9 0). To exploit this 
fact, we extend the forgetful map ƒ„: T(p9 n) -> T(p9 0). One can construct a 
holomorphic mapping Fn: V(p9 n) -> V(p, 0) so that the following diagram 

V(p, n) — ^ — V(p, 0) 

T(p, n) - ^ - * T(p, 0) 

commutes. With the aid of this construction, one can establish the following 

PROPOSITION. The holomorphic sections s: T(p9 n)-» V(p9 n) of mn are in 
bijective correspondence with the holomorphic maps h: T(p9 n)-> V(p9 0) such 
that 7T0 o h = ƒ„. 

6.9. Once again, the study of these maps proceeds on the cotangent level. 
With the identification of cotangent spaces given in §4.9, the nonexistence of 
holomorphic mappings h of Proposition 6.8 is equivalent to establishing the 
following 

THEOREM (EARLE-KRA [EK3]). Let X be a closed Riemann surface of genus 
p > 2, X' = X \ {x0}, and X" = X \ {yl9 . . . ,yn}9 x0 G X, andyl9 . . . 9y„ 
are n > 1 distinct points in X. Let L: Q(X') -> Q(X") be a C-linear map such 
that 

Ltp = <p all<p£Q(X)9 \\Lq>\\ < IMI all<p<=Q(X'). 

If p > 3, then x0 = yk for some k9 and Ixp = <p all <p E Q(X'). If p = 2, let 
j : X -* X be the hyperelliptic involution of X. Then either x0 = yk for some k9 

J(xo) = yk for some k> or xo *s a Weierstrass point of X. 

6.10. In order to use Proposition 6.5 to prove the theorem, it is useful to 
establish the following two general propositions about projection operators of 
norm one. 

Let V be any real Banach space whose norm || • || is a differentiable 
function on V \ {0}, and set 

^(t,>w) = l imiiiL±iHLliN) vev\{0},wev. 
t-+0 t 

Then for all v G V\ {0}, w t-> A(v9 w) is a bounded linear functional on V. 
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PROPOSITION I. Let W be a nontrivial closed subspace of V9 and let W' be the 
closed subspace 

W' = {v E W;A(w9 v) = 0allw E W\{0}}. 

There exists a projection P of norm one from V onto W if and only if W' is a 
complementary subspace to W. Further, if P exists, it is unique and its kernel is 
W'. 

PROPOSITION II. Let L: V-> V be a linear map of norm one. If V has finite 
dimension, and the {closed) subspace W = {v E V; Lv = v) is nontrwial, then 
there is a projection P of norm one from V onto W. 

The proofs of the propositions are quite easy. They may be found in [EK3]. 
These two results allow us to imply from the existence of an operator L as in 
Theorem 6.9, a projection P as in Proposition 6.5. 

6.11. Let A" be a closed Riemann surface of genus/? > 2, and let H be a 
nontrivial (finite) group of conformai automorphisms of X. The group H acts 
in a natural way (recall §3.3) on the TeichmüUer space T(p9 0) as a group of 
biholomorphic maps. The fixed point set T(p, 0)H represents Riemann 
surfaces of genus p which admit H as a group of automorphisms and is 
biholomorphically equivalent (by Kravetz [Kz], for example) to T(p'9 ri)9 

where/?' is the genus of closed surface X/H and n' is the number of points in 
X/H over which the projection from X to X/H is branched. 

The group H also acts as a group (see, for example, Bers [Bll] or §3.4) of 
fiber-preserving holomorphic mappings of V(p, 0). Further, each fiber is 
mapped onto itself. Methods similar to those outlined previously yield the 
following 

THEOREM. Let s: T(p, 0)H -* V(p, 0) be a holomorphic section of 
TT0: V(p, 0) --> T(p, 0). If 2/?' + n' > 4, then S(T) is fixed by a nontrivial 
element of H for all r E T(p, 0)H. 

7. Families of Jacobian varieties. 

7.1. We now consider the universal TeichmüUer curve IT0: V(p,0)^> 
T{p, 0),/? > 2, represented by choosing a fixed Fuchsian group T. We choose 
next a canonical set of generators for T, 

AvA29...,Ap,BvB29...9Bp; (7.1.1) 

that is, T is the group on the 2/? generators listed previously subject to the 
single defining relation 

II AJBJAJ-'BJ-1 = 1. 

For any \x E M(T), the loops on the Riemann surface wM(C/)/TM determined 
by the prior generators have intesection numbers 

Aj-Ak-0-Bj-Bk9 Aj-Bk = 8Jk9 1 < j9 k < /?. (7.1.2) 
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Let / = $(f i )bea coordinate on the Teichmüller space T(p9 0). Bers [B3] 
has produced holomorphic functions aj9 1 < j < /?, on F(T) satisfying 

« ; . ( a ) = « y W a ) ) | ( a ) all y e r, (7.1.3) 

and 

fAi^aj(t,i)di=ôjk, (7.1.4) 

for all / e T(p9 0), all f E 1/(0 = w^tf), and 1 < j,k < p. The integral in 
(7.1.4) and other such integrals are to be computed along any path in U(t) 
from S to A&Ç). (Recall that A*k = w" o ^ o (w*1)"1 as defined in §2.3.) 
Formulae (7.1.3) and (7.1.4) mean that the functions al9 . . . , <Xp on £/(0 are 
the lifts from X' = U(t)/T* of the normalized abelian differentials of the first 
kind dual to the canonical homology basis defined by (7.1.1) and (7.1.2). The 
Riemannperiod matrix r(t) = ( T # ( 0 ) of X' is the/? X p matrix with entries 

rJk(t) = fm)aJ(t,i)di, (7.1.5) 

where f is any point in U(t). The matrix r is symmetric with positive-definite 
imaginary part. 

7.2. Let ƒ be the/? X p identity matrix. The columns of the/? X 2/? matrix 
(ƒ, r(0) are linearly independent over R (the reals) for fixed t E T(p, 0). We 
introduce an action of Z2p on T(p9 0) X Cp as follows (here Z = integers): 

N• (f, z) - (f, z + (/, r(O)tf) all (t, z) E T(/?, 0) x e , i V G Z^. 
The action we have introduced is free and properly discontinuous, and Z^ 
acts as a group of biholomorphic automorphisms of T(p9 0) X Cp. 

Let / ( V(p9 0)) be the quotient manifold, 

j(v(p9o))~ T(p9o)xcp/z2p. 
The projection of T(p, 0) X Cp onto the first factor induces a holomorphic 
projection 

p:J(V(p90))-*T(p90)9 

such that for each t E JT(/?, 0), p~l(t) is the Jacobian variety J(X') of the 
surface X* (topological^, J(X<) = Qp/7}p\ 

7.3. For fixed f E T(p9 0) and f0 E 1/(0, we define an embedding r/ of A" 
into /(X') by the formula 

where TJ = (r ,̂ . . . , TJ,) is viewed as a column vector. Formulae (7.1.4) and 
(7.1.5) show that equivalent points under T' are mapped to the same point in 
J(X'). 

7.4. We want to define an embedding of V(p9 0) into J(V(p9 0)) whose 
restriction to each fiber X*9t E T(p9 0), agrees with one of the maps given in 
§7.3. If we could choose the base point f0 E 1/(0 to depend holomorphically 
on t9 we would be done. However, f or /? > 2 this is impossible by Theorem 
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6.2, so one has to proceed in an indirect manner (Earle [E5]). Define a map 
<q:F(T)-+Cpby 

(1 -/>)*?,(>, O 

i P 

= -~rM(t) + 2 (m) ds f a//, u)ak(t, s) du, K j < p. 

Then, by direct calculation, rj is holomorphic, drij/dÇ = ap 1 <j<p, 

V(Ak(t9 £)) = i?(/, » + e*, 

T , ( ^ ( / , f )) = i?(/, f) + r(t)ek, \<k<p, 

where ^ is the A:th-column of the identity matrix ƒ. 

THEOREM (EARLE [E5]). The map (/, f ) n> (/, TJ(/, f )) /rom F(T) to 
T(p, 0) X Cp defines a holomorphic embedding <p: V(p, 0)^>J(V(p, 0)) //ifl/ 
sends each Riemann surface into its Jacobian variety. 

For more properties of this interesting map <p, see Earle [E5]. We shall 
mention only one remarkable fact. 

7.5. The Jacobian variety of X\ J(X'\ can be identified with the divisor 
classes of degree zero on X' (that is, divisors of degree zero modulo principal 
divisors). See, for example, Gunning [Gu, pp. 37-38]. The classical embedding 
of X' into J(X') is, in this setting, a holomorphic map that sends x G X* to 
the class [x — x0] of the divisor x — x0, where x0 is the base point of the 
embedding. More generally, if [D] is any divisor class of degree one on X\ 
then x*-*\x — D] is an embedding of X' into J(X'). All translates of the 
classical embedding arise in this way. Hence, the embedding <p: V(p, 0)-> 
J(V(p, 0)) defines a divisor class [£>'] of degree one on each X*. Note that 
although it is not possible to find an integral divisor of degree one on each X' 
which depends holomorphically on /, it is possible to find a class of degree 
one that does depend holomorphically on moduli. The class [£>'] so found 
has the property that [(/? - 1)Z>'] is the divisor class corresponding to the 
vector of Riemann constants (see Fay [Fa, pp. 7-8] for definition). Hence, 
[(2p — 2)D'] is the canonical class. 

The canonical class [K*] depends holomorphically on t (Bers [B3]). Earle 
[E5] has shown that x H> [(2p — 2)x — K'] defines a holomorphical map of 
V(p9 0) into J( V(p, 0)). Analytic continuation and the simple connectivity of 
T(p9 0) can be used to obtain a holomorphic embedding of the form x H> 
[x - K*/(2p - 2)]. 

7.6. We end with the following interesting 

PROBLEM. Fix an integer p > 2. What is the lowest value of n so that one can 
choose on each surface X' (t E T(p, 0)) an integral divisor Dl

n of degree n in 
such a way that Z>w' varies holomorphically with tl 

It is not too hard to prove (as a result of §6.2) that this number n(p) 
satisfies n(2) = 1, and for/? > 2, 1 < n(p) </? — !. 
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