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BOOK REVIEWS 

Three-dimensional problems of the mathematical theory of elasticity and thermo-
elasticity, by V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. 
Burchuladze, Applied Mathematics and Mechanics, vol. 25, North-Hol­
land, 1979, xix + 929 pp., $158.50. 

The classical theory of elasticity, with which the book under review is 
concerned, is one of the more highly developed and satisfactory branches of 
mathematical physics, in that mathematical rigour and physical intuition are 
combined with rich results. Over the years, problems which were originally 
investigated for purely practical reasons have been reformulated in precise 
terms and have led to mathematical investigations of great interest and 
elegance. Unfortunately, it is not a subject which is taught nowadays in 
mathematics departments, even at graduate level, and many mathematicians 
are unaware of the stimulus that research in it during the last 150 years has 
given to the study of partial differential equations, singular integral equations, 
complex function theory, variational inequalities and bifurcation theory. 

The mathematical foundations of the classical theory were laid down by 
Cauchy and as Truesdell, in his preface to [38], has reminded us: "For a long 
time it was a favourite subject of mathematicians and was regularly taught in 
mathematics departments. In this century both Hadamard and Hubert lec­
tured upon it, as had Poincaré and many others in the last. Of the mathemati­
cians of that time who are best known for their work in what is now called 
'pure' mathematics, we may collect a long list naming those who made at 
least one important addition to elasticity-Beltrami, Betti, G. D. Birkhoff, 
Cesàro, Christoffel, Clebsch, Fredholm, Hadamard, Korn, Lamé, Levi-Civita, 
Lipschitz, Morera, Volterra, Weingarten, Weyl." Truesdell goes on to high­
light the contribution made to elasticity by distinguished Italian mathemati­
cians who specialized in the subject: Almansi, Cerruti, Lauricella, Piola, 
Signorini, Somigliana and Tedone. One suspects that it is only his reluctance 
to name living mathematicians that causes Truesdell to omit the name of 
Gaetano Fichera whose own account [11] of the Italian contribution to the 
theory of elasticity makes fascinating reading. Nor do I think that Truesdell 
would object to his own name being added to the list: the rigour of his 
mathematical proofs, the depth of his physical insight, and the elegance of his 
writings put him firmly in the Italian tradition. He has certainly been one of 
the leaders of the renaissance of continuum mechanics. 

The only national school which might lay claim to have made a contribu­
tion of the same magnitude is that of the U.S.S.R.; its contribution has been 
mainly to the two-dimensional theory and to the development of the atten­
dant techniques in function theory, and also to the potential theory methods 
described in the book by Kupradze et al. A modest account of its achieve­
ments is contained within [29]. 

The mathematical theory of elasticity is concerned with the calculation of 
the strain and stress fields within a solid body when it is subject to the action 

870 



BOOK REVIEWS 871 

of a self-equilibrating system of forces. The body under considerations is said 
to be elastic if the stress within it is determined by the strain at a given instant 
and not by the entire past history of the motion. 

The first scientist to consider the deformation of a solid body due to the 
application of an external force was Galileo [13] who considered the problem 
of determining the resistance of a beam, one end of which is built into a wall, 
when the tendency to break it arises from its own or an applied weight. 
Galileo concluded that the beam tends to turn about an axis perpendicular to 
its length, and in the plane of the wall. He had to treat the beam as inelastic 
since he was not in possession of any physical law relating the magnitude of 
the applied forces to the displacements in which they resulted. The experi­
mental basis of such a law was provided by Hooke [17], [15] who gave in 
1678, the famous law of proportionality of stress and strain which bears his 
name. 

In the interval of nearly a century and a half between the publication of 
Hooke's law and that of the field equations of elasticity, the attention of those 
mathematicians who occupied themselves with the theory of elasticity such as 
James Bernoulli, Euler, Coulomb and Sophie Germain, was directed mainly 
to the solution and extension of Galileo's problem, and the related theories of 
the vibrations of bars and plates. 

The general theory of elasticity may be said to have its origin in a paper 
read before the Paris Academy of Sciences by Navier in May 1821, (but not 
published until 1827) but it was Cauchy who put the mathematical theory of 
homogeneous isotropic elastic bodies on a firm foundation. Cauchy's interest 
in elasticity was first prompted by his appointment to the Commission set up 
by the Paris Academy to report on a paper by Navier on elastic plates 
presented to the Academy in August 1820. 

By the summer of 1822 Cauchy had set up the elements of the mathemati­
cal theory of elasticity; his memoir on the subject was communicated to the 
Paris Academy in September 1822 but it was not published. An abstract 
appeared in the Bulletin des Sciences à la Société Philomathique, 1823 and the 
contents were fully described in three articles in Cauchy's Exercises de 
Mathématique (1827, 1828). The third of these, published in the volume for 
1828, entitled "Sur les équations qui experiment les conditions d'équilibre ou 
les lois de mouvement intérieur d'un corps solide" established the correct 
equations to model the behaviour of an isotropic elastic body. 

To describe Cauchy's work we use modern notation. We consider a solid 
body identified with the region 5 c R 3 it occupies in a fixed reference 
configuration. A deformation of B is a smooth homeomorphism f : B -» R3 

with det Vf(x) > 0. The point f(x) is the place occupied by the material point 
x in this deformation and the vector u(x) = f(x) — x is the displacement of x. 
The tensor fields F = Vf and Vu are called, respectively, the deformation 
gradient and the displacement gradient. There are several definitions of strain 
in the literature but it can be shown (see §32 of [34]) that all the properly 
invariant choices are, in a certain sense, equivalent. A suitable choice, and the 
one favoured in [16] is the finite strain tensor D defined by the equation 

D = ± ( F r F - I ) 
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where F r denotes the transpose of F and I denotes the unit tensor. What is of 
importance in the linear, or classical, theory of elasticity-and it is the linear 
theory with which Kupradze et al. are concerned-is the infinitesimal strain 
tensor 

E = I ( V u + V u r ) . (2) 

Since D = E + |VruVu it is obvious that the linear theory models physical 
situations in which | Vu| is, in some sense, small. 

Cauchy introduced the concept of stress into the theory of elasticity to 
characterize the internal forces. Through the point with position vector x, we 
consider a surface element with normal n and area a. The internal forces 
produced by the interaction of the part* of the body on the opposite sides of 
this element are statically equivaler»- to a force S and a couple M. Cauchy 
assumed that 

lim M/a = 0 (3) 
a-*0 

and that the limit o(x, t; n) = lima_ 0̂ S/a exists and is independent of the 
shape of the surface element. It is then easily shown that there exists a tensor 
field S such that o(x, t; n) = S(x, t)n. 

If we denote by p the density of the body and by b(x, /) the force per unit 
volume exerted on an element of volume centred at the point x, then the 
principle of the balance of linear momentum leads to the equation 

div S + b - pü (4) 

and the principle of the balance of angular momentum leads to the conclu­
sion that S is a symmetric tensor field. In the case of statical equilibrium the 
term occurring on the right-hand side of equation (4) is replaced by the zero 
vector. 

Cauchy's final assumption is that the relation connecting S and E is linear, 
i.e. that there exists a fourth-order tensor C such that S = CE. When the 
body is homogeneous and isotropic and the process of deformation is 
isothermal we may write this relation in the form 

S - A(tr E)l + 2/tE (5) 

where À and /i are constants, now known as the Lamé constants. This is one of 
the important respects in which Cauchy's results differ from Navier's; the 
latter's generalization of Hooke's law contains only a single elastic constant. 

The equations (2), (4), (5) essentially express the classical theory of elasticity 
as established by Cauchy. If we eliminate S and E from these equations we 
obtain an equation for the displacement field u(x, t); this equation is known 
as Navier9s equation. 

An excellent account of the classical theory and of its extension to the case 
of anisotropic bodies is given by Gurtin [16]. 

The linear theory of elasticity engaged the attention of many distinguished 
mathematicians in the nineteenth century, as indicated above. Progress was 
so rapid that in just over 65 years after the publication of Cauchy's results 
there appeared not only the first edition of what was to become a classic 
treatise on the subject [25] but also the second volume of a comprehensive 
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history of its development [33]. In the 19th century the main research effort 
went into the solution of special problems in torsion and flexure and to the 
study of plane strain and plane stress although important general results such 
as Betti's reciprocal theorem were derived. 

The most exciting aspect of research in elasticity in the present century has 
been the development of general continuum mechanics and, in particular of 
nonlinear theories of elasticity. This new era was inaugurated by Rivlin in a 
series of 13 papers on large elastic deformations published in the years 
1947-1949 (see [34]). The publication of the treatises [14], [35], [6] and [34] did 
much to stimulate research in the nonlinear theory. In this connection 
reference should also be made to [38]. 

In the linear theory it could be claimed that in the 20th century the 
emphasis shifted to the solution of boundary value problems. In the period 
before World War II research effort was divided between the devising of 
approximate methods for the solution of problems in two and three dimen­
sions (finite-difference methods, the relaxation method, truncation of infinite 
series, direct variational methods) and the complex variable techniques 
devised by Muskhelishvili and his co-workers for the solution of plane 
problems [28]. Muskhelishvili's methods and the Wiener-Hopf technique have 
proved to be most effective in the solution of boundary value problems in the 
plane, but, of course they cannot be directly extended to three-dimensional 
problems. 

It was not until the late 1930's that attempts were made to establish 
systematic methods for the solution of three-dimensional problems. Apart 
from purely numerical methods (such as the 'finite element' technique) the 
main procedures put forward have been based on one of the three: (a) the 
theory of integral transforms ([30], [36], [31], [32]); (b) the theory of the 
potential and of integral equations [21]; (c) the theory of variational inequali­
ties [5]. In addition there has been great interest in deriving rigorous existence 
and uniqueness theorems ([7], [9], [19]) which should be studied carefully 
before extensive numerical work is undertaken. 

The application of the methods of potential theory and of the theory of 
linear integral equations to the solution of boundary problems of elasticity 
was first considered by Fredholm [12] and Lauricella [22], though in some 
respects this was foreshadowed by Boussinesq whose significant work [2] has 
been unjustly neglected. Fredholm considered the first boundary value problem 
of the equilibrium of an elastic body-i.e. the problem of determining the 
displacement field in B when the displacement vector u(x) is prescribed for all 
x G dB, the boundary of B. The Navier equations of equilibrium form an 
elliptic system and the problem of solving them for given boundary values of 
the displacement vector is a Dirichlet problem. An alternative method of 
solution to Fredholm's was developed by Boggio [1] and Korn [20]. In his 
critique [39] Weyl points out that while Fredholm's solution of the first 
boundary value problem is analogous to the Neumann-Fredholm method in 
potential theory, Boggio's solution leads to integral equations with com­
plicated, intractable kernels which, contrary to Boggio's assumption, are not 
regular. Weyl's paper contains an account of the use of his "antennae" 
method for the reduction of the second boundary value problem to that of 
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solving regular inhomogeneous Fredholm equations. In proving the existence 
of the solutions of these equations, Weyl assumed, without proof, the possibil­
ity of biorthonormalizing the sets of fundamental solutions of a pair of 
adjoint Fredholm equations of the second kind. 

Lichtenstein's method [23] which appears to be applicable only to the first 
boundary value problem imposes severe restrictions on the nature of the 
boundary surfaces. 

A more recent paper [18] dealing with the first and second boundary value 
problems is interesting in that-as Kupradze [21] points out-the authors quite 
illegitimately use Fredholm's theorems to derive results which happen to be 
correct! 

Papers based on Fredholm methods consider only the first and second 
boundary value problems of elastostatics and only for the solution of the first 
problems is the method really successful; no mention is made of mixed 
boundary values in which displacements and stresses are each partly pre­
scribed (contact problems and crack problems). The difficulties are even 
more severe when we pass to elastodynamics and when the elastic bodies are 
inhomogeneous. Even in the case when the elastic body is piecewise-homoge-
neous, i.e. is made up of parts having different elastic parts, difficulties arise 
because we have to take into account not only the conditions on the outer 
boundary but also those at the interfaces between different elastic compo­
nents. 

A method of tackling all the boundary value problems mentioned above, 
from static problems for homogeneous isotropic bodies to dynamical prob­
lems for piecewise-homogeneous bodies has been devised and developed over 
the last 45 years by Kupradze and his Georgian students and colleagues, of 
whom three of the most distinguished are co-authors of the book under 
review. Kupradze's method is based on the theorems of potential theory and 
of multidimensional singular integral equations. For example, the problem of 
finding the solution of the simplest of the mixed boundary problems for a 
homogeneous isotropic half-space-the Boussinesq or contact problem-can be 
shown to be equivalent to that of solving the integral equation 

where ƒ is prescribed and the unknown constant S is determined by the 
condition /?(x)-»0 as x-*3Q from the interior of Ö. The existence of 
solutions of multidimensional integral equations of this type is guaranteed, 
for functions ƒ belonging to a wide class, by the Giraud-Mikhlin theory. For 
more complicated problems in elasticity we have to deal not with a single 
equation but with systems of singular integral equations; this has motivated 
Kupradze and his colleagues to extend the Giraud-Mikhlin theory to such 
systems. An account of these methods is given in the large monograph [21] 
where, also, they are used to prove existence and uniqueness theorems. This 
book also deals with methods of deriving approximate solutions of the 
boundary value problems of elasticity. Reference should also be made to 
Mikhlin's book [27] which gives a different approach to the theory of systems 
of multidimensional integral equations on closed manifolds. 
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It will be recalled that Cauchy assumed that the deformation process is 
isothermal. If we abandon this hypothesis and denote by 0(x, t) the deviation 
of the temperature from its value in the reference state, then, in the case of a 
homogeneous isotropic solid, the stress-strain relation (5) is modified by the 
addition of a term — yOl, with y a positive constant, to its right-hand side. 
The classical Fourier equation of the conduction of heat has also to be 
modified by the addition of a term proportional to (3/9/)(tr E). The set of 
equations so modified provides the basis of the classical theory of thermo-
elasticity which is discussed fully in [3]. 

A modification of the classical theory was introduced by the brothers 
Cosserat in 1898, [4], who assigned to each molecule of an elastic body a 
perfectly rigid trihedron which, during any deformation underwent a rotation 
as well as a displacement. In this way, was envisaged an elastic solid with 
whose points was associated an orientation, so that each material element of 
the body had six degrees of freedom. In this theory therefore, the deformation 
of an elastic body is described by a displacement vector u(x, t) and an 
independent rotation vector io(x, t) and the condition (3) is replaced by the 
assumption: the limit ji(x, t; n) = lima_>0 M/a exists and is independent of n. 
Associated with the vector fi(x, t; n) is a tensor M(x, i) with the property that 
H = Mn; the components of the tensor are known as couple-
stresses. In the framework of an infinitesimal theory, it is assumed that 
there is a linear relation connecting M and a torsion tensor formed from 
derivatives of the components of the vector <o. These assumptions then lead to 
the conclusion that both the strain and the stress tensors are asymmetrical. 
Despite the novelty of the Cosserats' ideas, their work was unnoticed by their 
contemporaries and was almost entirely neglected for some 50 years until 
interest in it was derived by Toupin and Truesdell (see §256 of [35] and §98 of 
[34]). These concepts have been generalized to produce a theory of micro-
polar elasticity but, in the book under review it is only the simple couple-
stress theory which is considered. 

In 1959 Signorini posed a new class of three-dimensional boundary value 
problems in elastostatics in which on part (or all) of the boundary the 
unknown functions must satisfy one or the other of two given sets of 
conditions; it is not known which of the two sets is satisfied at any given point 
of the boundary. In addition, the conditions may not only take the form of 
equations, but also of inequalities. A typical example of such a problem is that 
of an elastic body B resting on a rigid foundation. If 2 is that part of dB on 
which the body can rest in its equilibrium condition and if f(x) is the force at 
a point x E dB — 2, then on dB — 2 we have, in the usual notation, So * f. 
Obviously the surface force cannot be chosen arbitrarily; f and the body 
force b must be such as to ensure the equilibrium of the body as a whole. As 
far as 2 is concerned either the set of conditions 

u • n = 0, S • (n ® n) > 0, S • (n ® t) - 0 (6) 

must be satisfied or the set 

u • n > 0, S • (n ® n) = 0, S • (n ® t) « 0 (7) 

where t denotes any vector tangent to 2 at the point in question. Since it is 
not known a priori which of the set of conditions (6) or (7) is satisfied at any 
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particular point of 2, Signorini called them ambiguous boundary conditions. 
Another term used in the literature is 'unilateral constraint'; a displacement 
field u which is compatible with a given system of constraints is said to be 
unilateral if the displacement field is not compatible with these constraints. 

It was in his analysis [8] of Signorini's problem that Fichera introduced, in 
a concrete situation, the concept of a variational inequality, later generalized 
by Lions and Stampacchia [24] and the source of many results in mechanics 
and physics some of which are described in [5]. A full discussion of boundary 
value problems of elasticity with unilateral constraints is given by Fichera in 
[10]. 

Although, in the discussion of special problems, reference is made to other 
methods of solution of three-dimensional problems, the book under review is 
mainly concerned with the use of potential theory and the theory of integral 
equations. This approach to proving existence theorems differs from that of 
Fichera [9] which is based on recent results in the theory of elliptic partial 
differential equations. Although Fichera considers only existence theorems in 
classical elasticity, his proofs seem more elegant; also in an accompanying 
article he considers problems of elasticity defined by unilateral constraints. 

No reference is made in the present book either to Signorini's problem or 
to the subsequent work on variational inequalities. This is due no doubt to the 
fact that Fichera's seminal paper [8] had not come to the authors' attention, 
and that the subsequent paper [24] by Lions and Stampacchia had appeared 
when the manuscript of the original Russian edition of the present book had 
already gone to press. However, the authors could have taken the opportunity 
provided by the publication of this English translation to include additional 
material on this important subject. 

In the latter chapters of the book the authors present an original method, 
not involving the solution of integral equations, for deriving approximate 
solutions of the equations of elasticity and also a more detailed discussion of 
some special problems. 

The book suffers from the fact that in some respects it reads like an 
introductory textbook on the linear theories of elasticity and thermoelasticity 
and in others like a set of collected research papers. Kupradze's earlier book 
21 seems more successful perhaps because its aims are clearer. Even the title 
of the present book is unfortunate in that it is not a collection of solutions of 
special problems in three-dimensional elasticity-as is, for instance, Lurie's 
book [26]-but an account of existence and uniqueness theorems for the full 
three-dimensional theory. 

Since the original Russian edition was published in Tbilisi in an edition of 
only 1500, it has been virtually impossible to obtain a copy outside of the 
U.S.S.R., so we must be grateful to the North Holland Publishing Company 
for making a translation available. The translation, though adequate to the 
needs of someone already familiar with the subject, is not always felicitous-
"a force of two unities"-and is sometimes inaccurate-"one may have an 
infinite number of directions at each (interior) point of a medium". 
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Physical mathematics has always been an important part of mathematics as 
a discipline which concerns itself with deepening and uncovering mathemati­
cal theorems by interpreting them in the light of applications to physics. Of 
course, in mathematics one is often faced with the challenge of putting a 
result in the right perspective ("what does this really mean?"), to look at it the 
right way; but even more so when it comes to relating the formulas to the 
"real world". Many an apology has been made on behalf of the cult of pure 
mathematics (pure almost in the sense of virgin, untouched by any reality but 
the mathematical), that here is where the beauty of the subject is found. This 
point of view is in turn still under fire from those advocating less abstraction 
and more solution in mathematics. I think there is an in-between, indeed I see 
a genuine interest in the mathematical community in applications of mathe­
matics, in combining abstract beauty with concrete power, and even remote 
hopes of assisting physics in its many struggles with fields and particles. 

Theoretical physics deals with building models of so-called physical sys­
tems; speaking of a physical system already breaks down the universe in two 
parts: the system plus a background (to the neglected or influencing the 
system in a given way). This jig-saw puzzle approach must add up to our 
given universe (the only true physical system: "les lois physiques concernent 
tous les mondes possibles, alors que le monde réel n'est tiré qu'à un seul 
exemplaire" (H. Poincaré))-a complicated verification by experimental 
physics. 

Perhaps the system to which most attention (and success) has been devoted 
is that of the Hydrogen atom: a point particle moving in R3 under the 
influence of a central force field with potential — r~\ r = (xj + x\ + x|)1 /2 . 


