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A compactum (compact metric space) is said to be strongly infinite dimen­
sional provided there is a denumerable family {(Ak, Bk)\k = 1, 2, . . . } of 
pairs of disjoint closed subsets with the property that if, for each k, Sk is a 
closed subset which separates Ak and Bk, then C\{Sk: k = 1 ,2 , . . . } =£ 0. 
The Hilbert cube Q is strongly infinite dimensional; let Q —Y[k=i Ik where Ik 

= [-1, 1], let the projections be denoted by irk: Q —> Ik, and let Ak = 
TT^C-I) and Bk = TT-'O) (see [H-W, p. 49]). 

In 1965, Henderson [He-1], [He-2] constructed a strongly infinite dimen­
sional compactum containing no «-dimensional (n > 1) closed subsets; the follow­
ing theorem states that there exist strongly infinite dimensional compacta which 
do not contain any «-dimensional (n > 1) subsets. 

THEOREM. Every strongly infinite dimensional compactum contains a 
strongly Infinite dimensional subcompactum which contains no n-dlmenslonal 
(n > 1) subsets. 

The question of whether or not such examples existed recently had taken 
on particular importance since Kozlowski [Ko] had shown that if no such exam­
ples existed, then Œ-mappings could not raise dimension. 

In 1967, Bing [Bi] gave a simpler construction of a Henderson-type exam­
ple. In 1974, Zarelua [Za] constructed Henderson-type examples using a dif­
ferent approach. Recently, L. Rubin, R. Schori and the author [R-S-W] devel­
oped an axiomatic approach for constructing Henderson-type examples; the ex­
amples announced in the above theorem are constructed using this axiomatic 
development. 

The author gratefully acknowledges the importance of a seminar run jointly 
with L. Rubin and R. Schori during the fall of 1976 at the University of Oklaho­
ma. 
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