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I consider the following parabolic equation 

(1) ut = div A(x, t, u, ux) + B(x, t, u, ux) 

where A , B are respectively, vector and scalar valued measurable functions satis­
fying the structure conditions 

\A(x, t,u,p)\<at\p\ +a2\u\ + a 3 , \B(x, ty u, p)\ < bx \p\ + b\\u\ + ftf, 
(2) 

p • A(x, t, u, p) > cx\p\2 - c\\u\2 - c\9 

where av cx are positive constants, and all of the remaining coefficients af, bp 

Cj are in L p , q for some pair of numbers (p, q) satisfying p > 2/(1 - 0); n/p + 
2/q < 1 - 0, where 0 is a positive constant, 0 < 0 < 1. This is precisely the 
equation studied by Aronson and Serrin [1] and is very similar to that studied 
by Trudinger [ 7 ] . 

We consider weak solutions from the class V2 in cylinders Q = £2 x (0, T) 
where SI C Rn is a bounded domain. V2(Q) is defined to be the space of meas­
urable functions u which have finite norm 

Hull = ess sup \ f \u(x, t)\2 dxW2 + E l l l ^ l U , ^ 

where {du/bxi}iz=:1 n are the weak (i.e. distributional) derivatives of u. We 
define V$(Q) to be the colsure in || • 11^2(0)' °f functions in C°°(Q) which van­
ish in a neighborhood of the parabolic boundary 3 Q = fi U {912 x [0, T]}. 
We say that w G V2(Q) is a weak solution to (1) if fytu - y x • .4(x, f, w, ux) + 
<0#(x, £, w, ux) = 0 for every function \p E C ~ ( ô ) . 

The Maximum Principle for such equations (Aronson and Serrin [1 , Theo­
rem 1 ] , can be generalized to the notion of weak boundary values as follows. 

THEOREM . If u £ VQ(Q) is a weak solution to (I) then almost everywhere 
in Q we have 

Mx, 01 < C(\\b3\\
2
Piq + \\c3\\p>q) 
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where C=C(T, |ft|, n, 0, \\bt\\, \\b2\\, cl9 \\c2\\). 
We employ the familiar Bessel capacity Bx 2 on Rn (see Meyers [5] ) and 

introduce a new capacity VC defined on Rw + 1 by 

VC(A) = Inf{\\u\\y2 +l: u>0mdAC Int{(x, t): u(x, t) > 1}} 

for any set A C Rw + 1. VC is an outer measure on Rw + 1 . These capacities are 
employed in the following results. 

THEOREM . If u E V\(Q) is a weak solution of(\\ then 

limit u(x, 0 = 0 
(x,t)-+(x0,t0);(x,t)<=Q 

for VC almost every point (x0, t0) E d Q. 

THEOREM . Suppose n > 2 and the structure coefficients ap bf, ct in (2) 
are all positive constants. Suppose also that x0 G 9£2 has the property that the 
Bx 2 upper capacitary density of £2 is positive at x0, that is 

Bu2(B(x0,r)n?î) 
lim sup —T£7 vT > 0. 

IfuG VQ(Q) is a weak solution of (I), then l imi t^^^^ t );(XJ)GQU(X> 0 
= 0 for every t0 G (0, T). 

The notion of limit employed is, of course, the essential limit. That is, u 
may need to be redefined on a set of zero measure. 

The last result is modeled after a similar result for elliptic equations appear­
ing in [3]. It gives a Weiner-like geometric condition on the base region O which 
implies continuity of a weak solution at all points on the lateral boundary of the 
cylinder directly "above" the boundary point x0. Proofs of all results appear 
in [2]. 
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