COEFFICIENTS FOR ALPHA-CONVEX UNIVALENT FUNCTIONS

BY P. K. KULSHRESTHA

Communicated by Eugene Isaacson, September 29, 1973

Let α be a nonnegative real number, and let $M(\alpha)$ denote the class of normalized α -convex univalent functions f in the open unit disc $E=\{z:|z|<1\}$, i.e., $f\in M(\alpha)$ if and only if f is regular in E, f(0)=f'(0)-1=0, $f(z)f'(z)/z\neq 0$ for $z\in E$, and

$$\operatorname{Re}\left\{(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left[1 + \frac{zf''(z)}{f'(z)}\right]\right\} > 0$$

for $z \in E$ [3], [4]. If $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$, the coefficient bounds for $|a_2|$ and $|a_3|$ are known [2], [4]; an inequality relating the coefficients $|a_n|$ for $n=2, 3, \cdots$ is found in [2]; yet the determination of the coefficient bound for $|a_n|$ has so far been an open problem.

Here we announce the general result for this coefficient problem; the proof will be published elsewhere.

THEOREM. Let $f(z)=z+\sum_{k=2}^{\infty}a_kz^k\in M(\alpha)$. Let S(n) be the set of all n-tuples (r_1,r_2,\cdots,r_n) of nonnegative integers for which $r_1+2r_2+3r_3+\cdots+nr_n=n$, and for each such n-tuple define m by $r_1+r_2+\cdots+r_n=m$. If $\gamma(\alpha,m)=\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-m)$ with $\gamma(\alpha,0)=1$, then for $n=1,2,\cdots$

(1)
$$|a_{n+1}| \leq \sum \frac{\gamma(\alpha, m-1)c_1^{r_1}c_2^{r_2}\cdots c_n^{r_n}}{r! r_2! \cdots r_n!},$$

where summation is taken over all n-tuples in S(n), and

$$c_n = \frac{2(2+\alpha)(2+2\alpha)\cdots[2+(n-1)\alpha]}{n! \,\alpha^n(1+n\alpha)}.$$

The bounds in (1) are sharp and for $\alpha > 0$ attained by

$$f(z) = \left[\frac{1}{\alpha} \int_0^z \zeta^{1/\alpha - 1} (1 - \zeta)^{-2/\alpha} d\zeta\right]^{\alpha}.$$

AMS (MOS) subject classifications (1970). Primary 30A32, 30A34. Key words and phrases. α -convex univalent functions, coefficient bound.

For $\alpha=0$, we find from (1) that $|a_n| \leq n$ for $n=2, 3, \cdots$ and the bounds are attained by the function $f(z)=z(1-z)^{-2}$. For $\alpha=1$, $|a_n| \leq 1$ for $n=2, 3, \cdots$ the bounds being attained by $f(z)=z(1-z)^{-1}$.

The technique used by Goodman in [1] has been employed to get the bounds in (1) in the compact form.

Thus, it is easy to find from (1) that, e.g.,

$$|a_{2}| \leq 2/(1+\alpha),$$

$$|a_{3}| \leq (3+8\alpha+\alpha^{2})/(1+\alpha)^{2}(1+2\alpha),$$

$$|a_{4}| \leq 4(3+19\alpha+38\alpha^{2}+11\alpha^{3}+\alpha^{4})/3(1+\alpha)^{3}(1+2\alpha)(1+3\alpha),$$

$$30+394\alpha+2024\alpha^{2}+5284\alpha^{3}+6386\alpha^{4}+2638\alpha^{5}$$

$$+488\alpha^{6}+36\alpha^{7}$$

$$|a_{5}| \leq \frac{1}{6(1+\alpha)^{4}(1+2\alpha)^{2}(1+3\alpha)(1+4\alpha)}$$

The formula (1) is however readily computable.

It may be noted that $\sup |a_{n+1}| < \sup |a_n|$ for $\alpha \ge 2$, $n=2, 3, \cdots$. Also, for a given $n, n=2, 3, \cdots$, $\sup |a_n|$ is a decreasing function of $\alpha, \alpha \ge 0$.

REFERENCES

- 1. A. W. Goodman, Coefficients for the area theorem, Proc. Amer. Math. Soc. 33 (1972), 438-444. MR 45 #530.
- 2. P. K. Kulshrestha, Coefficient problems for a class of Mocanu-Bazilevič functions (submitted).
- 3. P. T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11 (34) (1969), 127-133. MR 42 #7881.
- 4. P. T. Mocanu and M. O. Reade, The order of starlikeness of certain univalent functions (to appear).

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY IN NEW ORLEANS, NEW ORLEANS, LOUISIANA 70122