EXAMPLES IN THE THEORY OF THE SCHUR GROUP

BY CHARLES FORD AND GERALD JANUSZ

Communicated by Joseph J. Rotman, April 23, 1973

Let K be a subfield of a cyclotomic extension of the rational field Q. The Schur group of K is the subgroup S(K) of the Brauer group of K consisting of those classes of central simple K algebras represented by an algebra which appears as a direct summand of a group algebra Q[G] for some finite group G. For a prime P let $S(K)_{p}$ denote the subgroup consisting of elements having P-power order. It is known by [1] that $S(K)_{p}$ can have an element of order P^{a} only when a primitive P^{a} root of unity, $E_{P^{a}}$, is in K.

Suppose K is a field which satisfies $Q(\varepsilon_{p^a}) \subseteq K \subseteq Q(\varepsilon_n)$ and p^a is the highest power of p dividing n. It is known that

$$(1) S(K)_p = K \otimes S(Q(\varepsilon_{p^a}))_p$$

in the case $K = Q(\varepsilon_n)$. That is every element in $S(K)_p$ is represented by an algebra $K \otimes B$ with B central simple over $Q(\varepsilon_{p^a})$ [2].

The assertion (1) also holds for K if p does not divide $(Q(\varepsilon_n):K)$. In this paper we present, for each prime p, fields K for which (1) does not hold.

Let p be a prime and r and s distinct primes such that $r \equiv s \equiv 1 \mod p$. Then the field $L = Q(\varepsilon_p, \varepsilon_r, \varepsilon_s)$ has two nontrivial automorphisms σ , τ which satisfy

- (i) $\sigma^p = \tau^p = 1$
- (ii) σ fixes ε_p and ε_r ; τ fixes ε_p and ε_s .

Let K be the subfield of L fixed by $\langle \sigma, \tau \rangle$. Let A be the algebra defined by

$$\begin{split} A &= \sum L u_{\sigma}^{i} u_{\tau}^{j}; \\ u_{\sigma}^{p} &= u_{\tau}^{p} = 1, \qquad u_{\sigma} u_{\tau} = \varepsilon_{p} u_{\tau} u_{\sigma}; \\ u_{\sigma} x &= \sigma(x) u_{\sigma}, \qquad u_{\tau} x = \tau(x) u_{\tau} \quad \text{for } x \text{ in } L. \end{split}$$

Then A is central simple over K and is a simple component of the group algebra Q[G] where G is the group of order p^3rs generated by u_{σ} , u_{τ} , ε_{prs} . We use this algebra for several examples.

Let f_r be the exponent of $r \mod s$; that is, f_r is the least positive integer f such that $r^f \equiv 1 \mod s$. Similarly let f_s be the exponent of $s \mod r$.

THEOREM. (1) If $p \mid f_r$ then the r-local index of A is p. In particular A has index p if either $p \mid f_r$ or $p \mid f_s$.

(2) If A has r-local index p and p^2 divides either r-1 or f_r then A is not

AMS (MOS) subject classifications (1970). Primary 16A26; Secondary16A40, 20C05.

similar to $K \otimes B$ for any $Q(\varepsilon_p)$ -central simple algebra B in $S(Q(\varepsilon_p))$. In particular, $S(K)_n \neq K \otimes S(Q(\varepsilon_p))_n$.

We remark that when p^2 does not divide either r-1 or s-1 then A is similar to $K \otimes B$ with B representing a class in $S(Q(\varepsilon_p))$. In fact B can be explicitly described as follows. Let the Galois group of $Q(\varepsilon_p, \varepsilon_r, \varepsilon_s) = L$ over $Q(\varepsilon_p)$ be $\langle \alpha, \beta \rangle$ where α has order r-1 and fixes ε_s while β has order s-1 and fixes ε_s . Then

$$B = \sum_{\alpha} L u_{\alpha}^{i} u_{\beta}^{j};$$

$$u_{\alpha}^{r-1} = u_{\beta}^{s-1} = 1, \qquad u_{\alpha} u_{\beta} = \varepsilon u_{\beta} u_{\alpha};$$

$$u_{\alpha} x = \alpha(x) u_{\alpha}, \qquad u_{\beta} x = \beta(x) u_{\beta} \quad \text{for } x \in L.$$

Here ε is a suitable power of ε_n .

It should be observed also that for any prime p, there exist primes r, s which satisfy the conditions in (2) of the theorem. In fact a little more can be said. Let p be any prime and m a positive integer. By Dirichlet's theorem there exist infinitely many primes r which satisfy $r \equiv 1 \mod p^m$. Now for any such r there exist infinitely many primes s such that $s \equiv 1 \mod p^m$ and the exponent of $s \mod r$ equals p^m . In fact the Dirichlet density of the set of such s is 1/(r-1).

One specific case where condition (2) holds occurs with p = 3, r = 7, s = 37. Then $f_r = 9$ and $f_s = 3$.

Suppose we construct the algebra A as above using p, r, s and $m \ge 2$ which satisfy the divisibility conditions just above. Let p^b and p^c be the highest power of p dividing r-1 and s-1 respectively. Suppose p^d is the highest power of p dividing f_r and $p^m = f_s$. Notice b, $c \ge m$. Then p^{b+d} and p^{c+m} are the exact powers of p dividing $p^{f} - 1$ and $p^{f} - 1$ respectively. The algebra $p^{f} - 1$ and we ask for which values of $p^{f} - 1$ and $p^{f} - 1$ respectively. The algebra $p^{f} - 1$ and $p^{f} - 1$

We formulate this more abstractly as follows.

THEOREM. Given a prime p and an integer $m \ge 2$ there exists a finite group G and a simple direct summand A of Q[G] having center K and index p such that

- (i) $\varepsilon_p \in K$, $\varepsilon_{p^2} \notin K$,
- (ii) for some integer n > m, $K(\varepsilon_{p^n})$ is a splitting field for A but no proper subfield is a splitting field.

By the general theory of algebras we know A has a splitting field E such that (E:K) = p. Here $(K(\varepsilon_{p^n}):K) = p^{n-1}$ can be made as large as desired by selecting suitable G and yet $K(\varepsilon_{p^n})$ is a "minimal splitting field" in the sense that no proper subfield splits the algebra.

REFERENCES

- 1. M. Benard and M. Schacher, The Schur subgroup. II, J. Algebra 22 (1972), 378-385.
- 2. G. J. Janusz, The Schur group of cyclotomic fields, J. Number Theory (to appear).

DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY, St. Louis, Missouri 63130

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801