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Let K be a subfield of a cyclotomic extension of the rational field Q. 
The Schur group of K is the subgroup S(K) of the Brauer group of K 
consisting of those classes of central simple K algebras represented by an 
algebra which appears as a direct summand of a group algebra Q\G\ for 
some finite group G. For a prime p let S(K)p denote the subgroup consist­
ing of elements having p-power order. It is known by [1] that S(K)p can 
have an element of order pa only when a primitive pa root of unity, epa, is 
i nK. 

Suppose K is a field which satisfies Q(spa) ^ K ç Q(en) and pa is the 
highest power of p dividing n. It is known that 

(1) S(K)p = K® S(Q(spa))p 

in the case K = Q(sn). That is every element in S(K)p is represented by an 
algebra K ® B with B central simple over Q(spa) [2], 

The assertion (1) also holds for K if p does not divide (Q(en):K). In this 
paper we present, for each prime p, fields K for which (1) does not hold. 

Let p be a prime and r and s distinct primes such that r = s = 1 mod p. 
Then the field L = g(ep, gr, es) has two nontrivial automorphisms cr, T 
which satisfy 

(i) CP = TP = l 

(ii) G fixes sp and sr; x fixes ap and ss. 
Let K be the subfield of L fixed by <(7, T>. Let A be the algebra defined by 

A = Z L w X; 
UP = uP = 1, uaux = spuTuff; 

uax = a{x)ua, uxx = T(X)UX for x in L. 

Then .4 is central simple over K and is a simple component of the group 
algebra Q[G~\ where G is the group of order p3rs generated by ua, ux9 sprs. 
We use this algebra for several examples. 

Let fr be the exponent of r mod s; that is, fr is the least positive integer ƒ 
such that rf = 1 mod s. Similarly let fs be the exponent of s mod r. 

THEOREM. (1) If p\fr then the r-local index of A is p. In particular A has 
index p if either p | fr or p \ fs. 

(2) If A has r-local index p and p2 divides either r — 1 or fr then A is not 
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similar to K ® B for any Q(ep)-central simple algebra B in S(Q(sp)). In 
particular, S(K)p * K (g) S(Q(sp))p. 

We remark that when p2 does not divide either r — 1 or s — 1 then A 
is similar to K ® B with B representing a class in S(Q(sp)). In fact B can be 
explicitly described as follows. Let the Galois group of Q(ep, sr, ss) = L 
over Q(ep) be <oc, ƒ?> where a has order r — 1 and fixes es while ƒ? has order 
s — 1 and fixes sr. Then 

B = YJLui
aufc 

K'1 = uy1 = 1, wat^ = £w^wa; 

uax = a(x)wa, t^x = P(x)up for x e L. 

Here e is a suitable power of ep. 
It should be observed also that for any prime p, there exist primes r, s 

which satisfy the conditions in (2) of the theorem. In fact a little more can 
be said. Let p be any prime and m a positive integer. By Dirichlet's theorem 
there exist infinitely many primes r which satisfy r = 1 mod pm. Now for 
any such r there exist infinitely many primes s such that s = 1 mod pm 

and the exponent of s mod r equals pm. In fact the Dirichlet density of the 
set of such s is l/(r — 1). 

One specific case where condition (2) holds occurs with p = 3, r = 7, 
s = 37. Then fr = 9 and / s = 3. 

Suppose we construct the algebra A as above using p, r, s and m ^ 2 
which satisfy the divisibility conditions just above. Let pb and pc be the 
highest power of p dividing r — 1 and s — 1 respectively. Suppose pd is the 
highest power of p dividing fr and pm = fs. Notice b, c ^ m. Then p b + d 

and p c + m are the exact powers of p dividing rfr — 1 and sfs — 1 respec­
tively. The algebra A has index p and we ask for which values of n will 
K(spn) be a splitting field for ^4? In case d = 0 the least n for which X(£p„) 
splits A is n = c 4- m. In case d ^ 0 then the least ft is the larger of the 
numbers b + d and c + m. In any case the least n is larger than m. 

We formulate this more abstractly as follows. 

THEOREM. Given a prime p and an integer m ^ 2 £/?ere exists a finite 
group G and a simple direct summand A of Q[G~\ having center K and index 
p such that 

(i) sp e K, sp2 £ X, 
(ii) for some integer n > m, K(epn) is a splitting field for A but no proper 

subfield is a splitting field. 

By the general theory of algebras we know A has a splitting field E 
such that {E:K) = p. Here (K(spn):K) = pn~l can be made as large as 
desired by selecting suitable G and yet K(spn) is a "minimal splitting field" 
in the sense that no proper subfield splits the algebra. 
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