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1. Introduction. The theory of double centralizers was developed for 
topological algebras by Johnson in [9] and [10] and further investigated 
in the case of a C*-algebra by Busby [2]. If A is a commutative C*-
algebra, that is A = C0(X)—the algebra of all complex valued continuous 
functions which vanish at infinity on a locally compact Hausdorff space 
X—then the algebra of all double centralizers of A is Cb(X)—all the 
bounded compley continuous functions on X [10]. The noncommutative 
generalization of the relationship between C0(X) and Cb(X) was found 
useful by Busby in his papers on extensions of C*-algebras ([2], [3]). 
The purpose of this note is to construct and to investigate a noncommuta­
tive analogue of C(X\ the algebra of all complex continuous functions 
on X. Let CC(X) be the ideal of C0(X) consisting of all the functions with 
compact support. Then the algebra of all double centralizers of CC(X) 
can be identified with C(X) [10]. Thus, a way to find a generalization 
of the algebra C(X) is by using an ideal of a C*-algebra which plays a 
similar role to that of CC(X) in C0(X). Such an ideal was shown to exist 
in any C*-algebra by Pedersen [12] and we shall exploit its properties 
towards the above stated aim. The full details of our discussion will 
appear elsewhere and we intend to pursue the matter in subsequent 
papers. 

We refer the reader to the papers [2], [9] and [11] for the definitions 
and the main facts concerning double centralizers and Pedersen's ideal. 
From now on A will denote a C*-algebra. We shall denote its Pedersen's 
ideal by KA or simply by K if the C*-algebra under consideration is 
well understood. The algebra of all double centralizers of A (respectively, 
K) is denoted by F(A) (respectively, T(K)). The subalgebra of T(K) con­
sisting of all double centralizers (S, T) for which S, T are bounded will be 
denoted by M(K). When convenient, we shall identify A, respectively K, 
with their canonical images in T(A), respectively M(K) [9]. If B <= A 
then£+ = {aeB:0 S a). 

2. In this section we shall present a few simple properties of K and 
T(K) which are useful in many of our proofs. 
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LEMMA 2.1. If (S, T) e F(A), then K is invariant under S and T. 

PROOF. Let aeK+. By [12], a1/2eK thus S(a) = S(ai/2)a1/2 is in K. 

COROLLARY 2.2. The map (S, T) -* (S\K9 T\K) from r(A) into T(K) is an 
isometric *isomorphism ofr(A) onto M(K). 

From now on we shall identify F(A) with M(K) <=. T(K) by means of 
the above map. 

LEMMA 2.3. Let {aj"= t c K. Denote by if (respectively, 0t) the smallest 
closed left (respectively, right) ideal of A containing {aj"=1 . Then 

PROOF. Since K is positively generated we may suppose {ai]
n

i=1 <= K+. 
It follows from [6, 12.4.1] that J5? is the closed left ideal generated by 
a = YJ= I ai- Let Ba be the C*-algebra of A generated by a. From [12], 
we infer that Ba a K. It is easy to check that if • Ba c if and that any 
approximate unit for Ba is a right approximate unit for S£. The Cohen-
Hewitt factorization theorem (see [1], [8]) implies that any xeJSf can 
be factored as x = y • z where y e if, z e Ba. 

We shall denote by i£a (01 a, respectively) the closed left (right respec­
tively) ideal of A generated by a e A. 

LEMMA 2.4. Let aeK and (S, T)eT(K), Then 5£a is invariant under S 
and 0ta is invariant under T. Consequently, S^a and 7j^a are bounded 
operators. 

PROOF. If xeif a then S(x) - lim T(ex)x where {ex}XeA is an approx­
imative unit for A contained in K [6, 1.7.2]. 

3. In this section we shall define a locally convex topology on F(K) 
which will give to T(K) a structure of topological algebra. 

The locally convex topology on T(K) determined by the family of 
seminorms Àxl(S, T)] = ||S(x)|| and px[(S, T)] = ||T(x)|| for all xeK 
is called the /c-topology. 

PROPOSITION 3.1. (T(K), K) is a locally convex topological algebra; that 
is, (F(K), K) is a Hausdorff locally convex space and the multiplication is 
separately continuous. 

PROPOSITION 3.2. (T(K), k) is complete and K is K-dense in T(K). 

PROPOSITION 3.3. If (S, T) e T(X), then S, T are K-continuous operators 
on K. 

If A = C0(X) then it is easily checked that K is the topology of compact-
open convergence on C(X). For A = LC(H), the algebra of all compact 
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operators on the Hilbert space H, we have, after suitable identifications, 
F(K) = T(A) = B{H), the algebra of all bounded operators on H. A net 
{T}}ieI in B(H) /c-converges to TeB(H) iff {Tt}ieI and {7]*}fe/ are 
strongly convergent to T T* respectively. This example shows that 
the multiplication in T(K) is not jointly ^-continuous in general. 

The following is an easy consequence of the Cohen-Hewitt factorization 
theorem. 

LEMMA 3.4. The collection of sets 

Wa = {(S, T)er(K): \\S(a)\\ Z 1, \\T(a)\\ ^ 1} 

for all aeK+ is a neighbourhood base at the origin for the K-topology. 

If ƒ e A (the Banach space dual of A) and a e A we denote by a • ƒ and 
ƒ -a the functionals x -» f{ax\ x -> f(xa\ respectively. 

THEOREM 3.5. I W = {a-f + g-a:aeK+
9f,geA'9 ||/||, \\g\\ S 1}. 

SKETCH OF PROOF. If Ua = {(S, T)eT(K): \\S(a)\\ S 1}, Va = 
{(S,T)eT(K):\\T(a)\\^l}, Wa = Ua n F. and C = { / G ^ : | / | ^ 1 } , 
then we have (i) Ua9 Va are weakly closed absolutely convex sets; (ii) a • C 
+ C-a is a w*-closed absolutely convex subset of r{K)'; (iii) t/fl 
c= { / -a : / eC} , Fa c { a - / : / e C } . After these facts are established the 
conclusion follows readily from Lemma 3.4 and the Hahn-Banach 
theorem. 

PROPOSITION 3.6. Iff is a pure state on A, thenfeT(K)'\ that is, f is 
K-continuous on A thus admits a unique K-continuous extension to T(X). 

By using the polar decomposition for functionals on A [6, 12.2.4] 
and a representation of r(K)' similar to that given by Theorem 3.5 we 
obtain 

THEOREM 3.7. IffeT{K) is selfadjoint, then \f\er(K)'. 

Here \f\ denotes the absolute value of/as a bounded linear functional 
on A and | / | e r (K) ' means that \f\ is /c-continuous. 

COROLLARY 3.8. F(K)f can be identified with a dense positively spanned 
subspace of A. If 0 ^ ƒ S 9 and g e r(K)', then f e r(K)f. If f e r(K)' 
and aeA then a • ƒ and ƒ • a belong to r(K)'. 

REMARK. A positive linear functional on F(K) need not be fc-continuous. 
Indeed, let X be a pseudocompact, locally compact noncompact Haus-
dorff space. If p is in the Stone-Cech compactification X but not in X, 
then the evaluation at p is a nonzero positive functional on C(X) = Cb(X) 
but is not K-continuous since it vanishes identically on C0(X). 
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4. For A = C0(X\ X a locally compact Hausdorff, M(K) = T(K) means 
precisely that the spectrum of A, i.e. X, is pseudocompact. In this section 
we shall analyse the phenomenon M{K) = T{K) in the noncommutative 
case. 

THEOREM 4.1. The following statements are equivalent: 
(i) M(K) = r(K); 
(ii) A is a two-sided ideal in T(K); 

(iii) the K-bounded subsets ôf A are uniformly bounded; 
(iv) for every sequence {xn}^i a K+ with lim„^00||x„|| = oo and 
xnxm = 0 for n ^ m, the sequence of partial sums {Yji=ixk}%=i *s not 

K-Cauchy. 

SKETCH OF PROOF. Let M be a K-bounded subset of A and {zn }JL x <= M 
such that ||z„|| ^ 16w. Set xn = z*z„/||zM||3/2. The sequence of partial 
sums {Xfc = i Xfc}£=i is K-Cauchy. By Proposition 3.2, it converges to 
some xeT{K). Now let yn = xn/ | |xj3 /2 . The series J^=1 yn is absolutely 
convergent. Let ye A be its sum. By (ii) we have y1/2xy1/2 e A. On the 
other hand, ||y1/2xy1/2|| ^ ||x„||1/2 ^ 2n for every n. 

(iv) => (i). Let {dx }A€A be a positive approximative unit for A contained 
in K. If M(A) ̂  T(K) then there is XGT(X) such that \\xdx\\ -> oo. By 
induction one can find a sequence {dXn}^=i such that \\dxn+idXp - rfApj| 
< \/n for 1 g p ^ n, n = 1,2,... and ||xdAn|| -• oo. Let A0 - {yeA: 
Xim^n ydXn = l im^oo^y = y}. A0 is a C*-subalgebra of A and dAn 

is an approximative unit for A0. It follows from [14] that A0 has a 
positive approximative unit {e„}™=1 such that en+1en = e„ for every n. 
We have {e„}!?=i <= K+ and from Lemmas 2.3 and 2.4 it follows that 
liminf||xeM|| ^ | | ^ A P | | for every p. Thus we may suppose ||xe2«+i|| ^ 
2n+1 + ||xe2w||. Now setting 

yn = (̂ 2« - e2«-i)x*x(e2M - e2„-i) and xn = yn/2
n 

we get a sequence {x„}*=1 cz JK+ such that ||xn|| -> oo, xwxm = 0 if 
n 7e m and {££ = 1 xk}£Li is K-Cauchy. 

A C*-algebra which satisfies any one of the conditions (i)—(iv) of 
Theorem 4.1 will be called a PCS-algebra. Since, for every irreducible 
representation n of a C*-algebra A, we have, by [6,2.8.3], Hn = {n(x)h : 
xeK9he Hn}, we get immediately 

COROLLARY 4.2. ƒƒ 4 is a C*-algebra and I is a primitive ideal of A, 
then A/I is a PCS-algebra. 

THEOREM 4.3. If the spectrum of A is compact, then A is a PCS-algebra. 

The proof relies on 

LEMMA 4.4. Let {xn}^=1 be a sequence in K+ such that xnxm = 0 if 
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n / m. Assume that \\xn\\ ~> oo and that the sequence of partial sums 
{Yiï = i Xk}™=i is K-Cauchy. Let A be the spectrum of A. Then, f or any 
aeK, the sequence {aw(a)}*=1, where 

ocn{a) = sup{||7r(a)||:7iei,||7i(xn)|| > ||x„||/2}, 

converges to zero. 

Techniques similar to those used in the proof of Theorem 4.1 together 
with the Dauns-Hofmann theorem ([5], [7]) lead to 

LEMMA 4.5. Let I be a closed two-sided ideal in A whose spectrum I 
is Hausdorff and dense in A. If A is not a PCS-algebra then there exists a 
sequence {x„}?=i in Kt such that the following hold: \\xn\\ -> oo; the 
functions % -» ||fl(xn)|| on I have pairwise disjoint compact supports; the 
sequence { ^ = 1 xfc}?=i is K-Cauchy in r(KA). 

This lemma is instrumental in proving part of 

THEOREM 4.6. Let A be a C*-algebra with Hausdorff spectrum Â. 
Then A is a PCS-algebra iff A is pseudocompact. 

SKETCH OF PROOF. We shall outline here the proof of one implication 
only. Let A be a PCS-algebra and assume that Â is not pseudocompact. 
By Theorem 4.1, there is a sequence {/„}£Li of nonnegative continuous 
functions on Â which have pairwise disjoint compact supports and such 
that 11 fn\ I -> 00 and the sequence {£$= 1 fk }%L 1 is Cauchy in the compact 
open topology. Let Vn = {neA:fn(n) > ||/«||/2J and pick nneVn, 
n = 1,2,.... Let gn be a continuous function on Â with values in [0,1] 
which vanishes off Vn and gn(nn) = 1. Pick zneK+ with nn(zn) ^ 0. 
By the theorem of Dauns and Hofmann mentioned above there are 
xn,yneK+ such that n(yn) = gn(n)n(zn) and n(xn) = fn{n)n{yn)l\\yn\\ for 
every neÂ. Then xn -xm = 0 if n # m and ||xn | | > ||/M||/2 so ||x„|| -» 00. 

Now let a be an element of A+ for which there is b e A+ with ab = a. 
K is the smallest hereditary two-sided ideal of A containing all such 
elements aeA+. For a as above, the function n -• \n(a)\ has compact 
support in Â and 

( t * ) r ^ 1 M 12 SUP {ktp >M*) I •• *e 4 *(*) ̂  °i-
Since {Xü = 1 /fe}?= 1 ^ Cauchy in the compact-open topology, {£$ = 1 xk}^= x 
is K-Cauchy and this contradicts Theorem 4.1. 

The next result generalizes the well-known theorem of Phillips [13] 
on the nonexistence of projections from /°° onto c0. A commutative 
version of this result is due to Conway [4]. The proof relies on Theorem 4.1 
and on Phillips' theorem. 
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THEOREM 4.7. Let B be a C*-subalgebra of A containing an approxima­
tive unit for A. If A is complemented in T(A\ then B is a PCS-algebra. 
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