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We give here an example, as simple as possible, of a degenerate elliptic 
operator Yj= 1 Xj where Xi9 X2,..., Xr are r vector fields with analytic 
coefficients which, with their commutators of order 1, span the whole 
space, and such that there exists a nonanalytic function u in the Gevrey 
class G2 with £5= x X)u = 0. 

1. We consider an operator 

(1) A = yP + Q 

where P is a second order elliptic (nondegenerate) operator and Q is a first 
order operator; we assume the coefficients of P and Q are analytic in some 
neighborhood 0 of the origin in Rn = {(x,y); xeR""1 and ysR}. For 
simplicity we suppose [P, Q] = PQ - QP = 0 (however it is possible to 
consider more general situations). We assume n > 1. 

We obtain the following result : 

PROPOSITION 1. Let V be a neighborhood of the origin in Rn~l x R+ 
= {(x, y); x e R"'1 and y e [0, oo[} which is relatively compact in 6. There 
exists a function ueG2(V%2 whose restriction to any neighborhood of the 
origin is nonanalytic, such that there exists a constant C > 0 with 

(2) l|/>Mk
M||L2(n^Clal+k+1(2fc)!(2a)! 

for each keN and a G Nn. 

PROOF. We note r = &n {(x, y)eRn~l x R; y = 0}. Let g be in G2(r) 
and nonanalytic in any neighborhood of the origin in Rn~K We construct 
a function u in some neighborhood of V in Rn~l x ]?+ such that 

/IMS 1970 si/tyert classifications. Primary 35H05, 35J70; Secondary 35A05. 
Key words and phrases. Hypoellipticity, analytic-hypoellipticity, degenerate elliptic 

operators. 
1 This research was partially done when the second author was visiting professor in Purdue 

University. 
2 The space G2(V) is the Gevrey space of order 2 which consists of functions t>e#*(F) 

such that there exists a constant C > 0 with ||Dat>||L2(n ^ C |a |+ ,(2a)! for each aeiV". 

Copyright (0 American Mathematical Society 1972 

483 



484 M. S. BAOUENDI AND C. GOULAOUIC [May 

Pu = 0 

+>x 

by solving a Dirichlet problem in some neighborhood of V in Rn * x J?+. 
Then w G G2(F) and is nonanalytic in any neighborhood of the origin (see 
[4]). 

We get obviously 
Aku = Qku in V. 

N o w the proof can be completed using the fol lowing result : 
For each v G G 2 (F ) , there exists a constant C > 0 such that, for every 

/c G/V and a G TV", 

\\D"Qkv\\L2(V) S C^+k+\2oL)\(2k)\. 

2. W e consider the operator 

(3) B = A + Dr
2 = y P + Q + D f

2 ,3 

in the ne ighborhood © x /? in R n + l = {(x,y, t); xeRn~\yeRjeR}. 
We have the fol lowing result : 

PROPOSITION 2. There exists a neighborhood W of the origin inRn~x x R + 
x R and a function w G G2(MP) whose restriction to any neighborhood of the 

origin is not analytic, such that 

Bw = 0 in W. 

PROOF. Let us consider the series 

Amu(x,y) 4 

(4) 
m = o (2m)! 

3 We denote by D, the operator - id/dt. 
4 Such a series is also used in [4]. 
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where u is given by Proposition 1. By using (2) it is easily seen that the 
function w is defined in W = V x [ — <5, +8] where ô is some suitable 
strictly positive number, and satisfies 

Bw = 0 in W 

and there exists M > 0 such that 

\\OlyD^\\L2{W)SM^+k+1k\(2oi)\ 

for each k e N and a G Nn. 
Furthermore we have 

w(x,y,0) = w(x,y); 

then w is nonanalytic in any neighborhood of the origin. 

3. Examples and applications. Let us consider, for example, the fol­
lowing simple case (with n = 2) : 

P = D2 + 4D2, 

Q = —2miDy with m integer ^ 1. 

Then 
(5) B = y(D2

x + 4D,2) - 2miZ), + D,2. 

We use the change of variables 

(6) y = z2 + --- + z2. 

We denote w by 

w(x, zu ..., zm, 0 = w(x, z? + • • • + z2, t) 

where w is given by Proposition 2. 
The function w is in the Gevrey class of order 2 in some neighborhood 

of the origin in Rm+2 and nonanalytic. (If w were analytic, the function 
(x, zut) «-* w(x, z2, r) would be analytic too in some neighborhood of the 
origin in R3. The latter function is even with respect to zl9 so the function w 
would be also analytic in some neighborhood of the origin in R x R+ x R, 
which contradicts Proposition 2.) 

By the change of variables (6), the operator B defined by (5) becomes 

H = (z\ + ••• + zl)Dl + Dl + ••• + D2
Zm + Df 

which can be written also in the form 
m m 

(7) H = £ (zjDx)
2 + X D2

Zj + Df. 
7 = 1 j=l 
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In some neighborhood of the origin in Rm+2 we have Hw — 0. Therefore 
the following result is proved : 

THEOREM. Let m be an integer ^ 1. The following operator 
m m 

" = I (zjDx)
2 + £ D2

Zj + Df 

is not analytic-hypoelliptic in Rm+2. More precisely, one can find a function 
w defined in some neighborhood of the origin, belonging to the Gevrey class 
of order 2, nonanalytic and such that Hw = 0. 

In fact, we can construct, by the same method used here, a function w 
which does not belong to any Gevrey class of order s < 2 and which 
satisfies Hw = 0. 

The operator H is obviously of the form ][] X2 and satisfies the Hörman-
der condition (see [3]), namely in this case the vector fields Xj and their 
commutators of order 1 span the whole space. 

If, in the example (7), we take m = 1, it turns out that the operator 
z2D2

x + D2 + Df is not analytic-hypoelliptic in R3; but it is known (see 
[5]) that the operator 

(8) z2D\ + D2 

is analytic-hypoelliptic in R2. Let us point out that M. Derridj and C. Zuily 
have also announced recently the analytic-hypoellipticity for same classes 
of operators which can be considered as generalizations of (8). 

On the other hand, Proposition 2 gives a negative result of analyticity 
up to the boundary; positive results were given in [1], [2] for some classes 
of degenerate elliptic operators apparently not far from those of Propo­
sitions 1 and 2. 
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