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1. Let g(x) denote a complex-valued potential defined in RN, N-
dimensional Euclidean space (N = 1). Suppose that g(x) satisfies the
following condition:

(C) q(x)e L¥(R¥) and there exist constants « > 0, p > 0, such that

max q(x)|e™! < oo.

Let A, (A) denote the selfadjoint (closed) operator acting in H = L,(R")
given by —A (—A + g(x)-). It is our intention in this note to study the
S '-matrix, &(k) (< '(k)), associated with the operators A, and A (4*).

In two previous papers, [1] and [2], we derived an abstract scattering
theory for two operators 4, and A4 acting in a Hilbert space H, where 4,
is selfadjoint and A is closed. We also showed in [2] that these results are
applicable to the operators A, and A defined above.? To be more precise,
we considered the operators Ao, = AoE,, and Ay = AE4, where {E,,}
denotes the spectral resolution for the selfadjoint operator Ay, E4 is a
projection operator and ¢ is a closed subinterval of (0, o), satisfying the
following condition:

(Cg) There exists no nontrivial outgoing or incoming solution of the
equation (—A — 4 + g(x))u(x) = O for any 4 in 4.2

In [1] we established the existence of “wave operators,” W* (W’%) and
the scattering operator, S = W+~ 1W~ (§' = W'*~1W'"), associated
with 4,, and Ay (A3) using a stationary formulation. From this, we
obtained the similarity of Ao, and Ay (A43). In [2] we expressed W* (W'*)
in terms of a time-dependent formulation. S was expressed in terms of
“distorted plane waves” by means of the % -matrix” (see §2).

In this paper, we shall obtain a meromorphic continuation of the
&-matrix and distorted plane waves from the interval ¢ to a strip in the
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In [2], the condition on g(x) was weaker than (C). However, we shall need the exponential-
decay in order to obtain the results of §2.

3 By outgoing (incoming), we mean that u(x) satisfies the outgoing (incoming) radiation
condition: u(x) = O(|x|"*~™'2) and (8/d|x| — iA?)u(x) = o(jx|* ~M'2) (8/d)x| + iA'/*)u(x)
= o(|x|* ~¥"?)) as |x| — co.
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complex plane. We shall also relate the poles of these functions to “‘resonant
states.” The detailed proofs of all of these results will appear elsewhere.

2. Set
Vi =q,(x) and V, = g,(x),
where
q:(x) = exp(—3alx])  and  g,(x) = g(x)exp(zolx]).
Define
Q5 (k) = ViRo(k?)V;, and Pg(x) = V;Ro(k*)VF,

for each « satisfying Im x > 0.
The following result will be proved elsewhere, using the properties of
the Green’s function for the operator 4, — k? and Sobolev’s inequality.

LEMMA 1. Suppose that condition (C) holds. Then Q¢ () has a unique
continuation to a compact operator acting on H = L,(R") for each x
satisfying Im x > —3}a. Furthermore, Q¢ (x) is analytic and Qg ~ (k) is
meromorphic in k in the operator topology on H. If in addition (Cg) holds,
then Q3 ~'(k) is analytic in a neighborhood of 9. Similar results hold for
Pg (k).

If we start with Im k¥ < 0, we may obtain compact operators Qg (x) and
P; (k) in the same way and they may then be extended to Im k < 4o with
an analogue of Lemma 1 holding. Now suppose that [Im x| < 4« and set
wo(x; K, v) = e**¥ and wo(x;x,v) = q,(x)w°(x; K, v), where ve S¥ ! (the
surface of the unit sphere in R¥). Clearly wO(-; k, v)e H = L,(R").

Set

(1) WE(x;x,v) = QF T 1K) (W05 K, V) (x)
and

wi(x; x,v) = q7 Wi (x; K, v)

provided the right side of (1) exists. If (C4) holds and x = |K]|, where
K = xve RY and |K|?> € %, then w(x; K) = w°(x; k, v) is a *“plane wave”
and wi(x; K) = w¥(x; x, v) is a ““distorted plane wave” (associated with
A). We may obtain distorted plane waves, w'*(x; K), associated with 4*
similarly with Q¥ (k) replaced by PF(x).

We also derived in [2] the following representation for the & -matrix,
Z(k) (¥'(x)), associated with S (§'), where k = |[K|, K = xve R¥ and
K|?e%.

& (k) is a continuous mapping of L,(SV ') onto itself and is given by
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@) S((V) = h(v) + — f r+n, —v; ©)h(n) dn
27'[ SN-1
for each he L,(S¥~!)and ve S¥ !, where

F(n,viK) = f 0% 16, Q3 ™M) (01 K, V) (x) dx

RN
and
vi(x;k,n) = q,(x)W(x; K, n),

j = 1,2. The operator &'(k) is defined analogously to ¥(k) with Qg (x)
replaced by Pg (k). Note that while &(k) is not unitary in general, we do
have the relation L(k)* = (k)™ 1.

The following result is a simple consequence of Lemma 1.

THEOREM 1. Suppose that conditions (C) and (Cg) hold. Then the distorted
plane waves, w*(x; k, v) (W% (x; k, v), and the &-matrix, (k) (¥'(k)), have
meromorphic continuations to |Im k| < 3« given by (1) and (2), respectively.
The poles occur among those of Q& ~ (k) (P& ~(x)).

By a resonant state of A at the point k, in —3¢ < Im k < 0 we mean a
nontrivial solution, u(x)e H* = L, (R¥; e~** dx), of the equation

3) LN G&(x — ¥l ko) (Wu(y) dy = — ()

where Gg(lx — y|; ko) denotes the outgoing Green’s function for the
operator Ay — k3. If q( y) is replaced by q(y) in (3), we shall say that u(x)
is a resonant state of A* at k. There exists a resonant state of 4 (4*) at
if and only if Qg ~ (ko) (Pg ~'(k,)) fails to exist.

THEOREM 2. Suppose that condition (C) holds. Then A (A*) has a resonant
state at Kk if and only if kg is a pole of £ (k) (¥'(k)).

Theorem 2 is proved by obtaining explicit formulas relating the resonant
states and the &-matrix. When A4 is selfadjoint, analogous formulas were
obtained by Shenk and Thoe in [3]. In addition, we may show that if
q(x, €) depends analytically on a complex parameter ¢, then so does the
&-matrix. Its poles are fractionally analytic functions of e. Finally we note
that all of the above results may be obtained for more general nonself-
adjoint operators. The detailed statements and proofs will appear else-
where.
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