THE *S*-MATRIX ASSOCIATED WITH NONSELFADJOINT DIFFERENTIAL OPERATORS¹

BY CHARLES GOLDSTEIN

Communicated by Peter Lax, September 27, 1971

1. Let q(x) denote a complex-valued potential defined in R^N , N-dimensional Euclidean space $(N \ge 1)$. Suppose that q(x) satisfies the following condition:

(C) $q(x) \in L_2^{loc}(\mathbb{R}^N)$ and there exist constants $\alpha > 0$, $\rho > 0$, such that

$$\max_{|x|>\rho}|q(x)|e^{\alpha|x|}<\infty.$$

Let $A_0(A)$ denote the selfadjoint (closed) operator acting in $H = L_2(\mathbb{R}^N)$ given by $-\Delta (-\Delta + q(x))$. It is our intention in this note to study the \mathscr{S} -matrix, $\mathscr{S}(\kappa)$ ($\mathscr{S}'(\kappa)$), associated with the operators A_0 and $A(A^*)$.

In two previous papers, [1] and [2], we derived an abstract scattering theory for two operators A_0 and A acting in a Hilbert space H, where A_0 is selfadjoint and A is closed. We also showed in [2] that these results are applicable to the operators A_0 and A defined above. To be more precise, we considered the operators $A_{0g} = A_0 E_{0g}$ and $A_{gg} = A E_{gg}$, where $\{E_{0\lambda}\}$ denotes the spectral resolution for the selfadjoint operator A_0 , E_{gg} is a projection operator and \mathcal{G} is a closed subinterval of $(0, \infty)$, satisfying the following condition:

 $(C_{\mathscr{G}})$ There exists no nontrivial outgoing or incoming solution of the equation $(-\Delta - \lambda + q(x))u(x) = 0$ for any λ in \mathscr{G} .³

In [1] we established the existence of "wave operators," W^{\pm} ($W^{\prime\pm}$) and the scattering operator, $S=W^{+-1}W^{-}$ ($S'=W^{\prime+-1}W^{\prime-}$), associated with A_{0g} and A_{g} (A_{g}^{*}) using a stationary formulation. From this, we obtained the similarity of A_{0g} and A_{g} (A_{g}^{*}). In [2] we expressed W^{\pm} ($W^{\prime\pm}$) in terms of a time-dependent formulation. S was expressed in terms of "distorted plane waves" by means of the " \mathcal{S} -matrix" (see §2).

In this paper, we shall obtain a meromorphic continuation of the \mathscr{G} -matrix and distorted plane waves from the interval \mathscr{G} to a strip in the

² In [2], the condition on q(x) was weaker than (C). However, we shall need the exponential decay in order to obtain the results of §2.

AMS 1970 subject classifications. Primary 35J10, 47A40.

¹ Sponsored in part by the United States Army under Contract No. DA-31-124-ARO-D-462 and in part by the Atomic Energy Commission at Brookhaven National Laboratory, Upton, Long Island, New York.

³ By outgoing (incoming), we mean that u(x) satisfies the outgoing (incoming) radiation condition: $u(x) = O(|x|^{(1-N)/2})$ and $(\partial/\partial|x| - i\lambda^{1/2})u(x) = o(|x|^{(1-N)/2})$ $((\partial/\partial|x| + i\lambda^{1/2})u(x) = o(|x|^{(1-N)/2})$ as $|x| \to \infty$.

complex plane. We shall also relate the poles of these functions to "resonant states." The detailed proofs of all of these results will appear elsewhere.

2. Set

$$V_1 = q_1(x)$$
 and $V_2 = q_2(x)$,

where

$$q_1(x) = \exp(-\frac{1}{2}\alpha|x|)$$
 and $q_2(x) = q(x)\exp(\frac{1}{2}\alpha|x|)$.

Define

$$Q_0^+(\kappa) = V_1 R_0(\kappa^2) V_2$$
 and $P_0^+(\kappa) = V_1 R_0(\kappa^2) V_2^*$,

for each κ satisfying Im $\kappa > 0$.

The following result will be proved elsewhere, using the properties of the Green's function for the operator $A_0 - \kappa^2$ and Sobolev's inequality.

LEMMA 1. Suppose that condition (C) holds. Then $Q_0^+(\kappa)$ has a unique continuation to a compact operator acting on $H = L_2(R^N)$ for each κ satisfying Im $\kappa > -\frac{1}{2}\alpha$. Furthermore, $Q_0^+(\kappa)$ is analytic and $Q_0^{+-1}(\kappa)$ is meromorphic in κ in the operator topology on H. If in addition (C_{\mathref{g}}) holds, then $Q_0^{+-1}(\kappa)$ is analytic in a neighborhood of \mathcal{G} . Similar results hold for $P_0^+(\kappa)$.

If we start with ${\rm Im}\,\kappa<0$, we may obtain compact operators $Q_0^-(\kappa)$ and $P_0^-(\kappa)$ in the same way and they may then be extended to ${\rm Im}\,\kappa<\frac{1}{2}\alpha$ with an analogue of Lemma 1 holding. Now suppose that $|{\rm Im}\,\kappa|<\frac{1}{2}\alpha$ and set $w^0(x\,;\kappa,\nu)=e^{ix\cdot\kappa\nu}$ and $w^0(x\,;\kappa,\nu)=q_1(x)w^0(x\,;\kappa,\nu)$, where $\nu\in S^{N-1}$ (the surface of the unit sphere in R^N). Clearly $\tilde w^0(\cdot\,;\kappa,\nu)\in H=L_2(R^N)$.

Set

(1)
$$\tilde{w}^{\pm}(x;\kappa,\nu) = Q_0^{\pm -1}(\kappa)(\tilde{w}^0(\cdot;\kappa,\nu))(x)$$

and

$$w^{\pm}(x\,;\,\kappa,\,\nu)=q_1^{-1}(x)\tilde{w}^{\pm}(x\,;\,\kappa,\,\nu)$$

provided the right side of (1) exists. If $(C_{\mathscr{G}})$ holds and $\kappa = |K|$, where $K = \kappa v \in \mathbb{R}^N$ and $|K|^2 \in \mathscr{G}$, then $w^0(x;K) = w^0(x;\kappa,v)$ is a "plane wave" and $w^{\pm}(x;K) = w^{\pm}(x;\kappa,v)$ is a "distorted plane wave" (associated with A). We may obtain distorted plane waves, $w'^{\pm}(x;K)$, associated with A^* similarly with $Q_0^{\pm}(\kappa)$ replaced by $P_0^{\pm}(\kappa)$.

We also derived in [2] the following representation for the \mathscr{S} -matrix, $\mathscr{S}(\kappa)$ ($\mathscr{S}'(\kappa)$), associated with S (S'), where $\kappa = |K|$, $K = \kappa \nu \in R^N$ and $|K|^2 \in \mathscr{G}$.

 $\mathscr{S}(\kappa)$ is a continuous mapping of $L_2(S^{N-1})$ onto itself and is given by

(2)
$$S(\kappa)h(\nu) = h(\nu) + \frac{i\kappa}{2\pi} \int_{S^{N-1}} r^+(n, -\nu; \kappa)h(n) dn$$

for each $h \in L_2(S^{N-1})$ and $v \in S^{N-1}$, where

$$r^{+}(n, \nu; \kappa) = \int_{\mathbb{R}^{N}} v_{2}(x; \kappa, n) Q_{0}^{+-1}(\kappa) (v_{1}(\cdot; \kappa, \nu))(x) dx$$

and

$$v_i(x; \kappa, n) = q_i(x)w^0(x; \kappa, n),$$

j=1,2. The operator $\mathscr{S}'(\kappa)$ is defined analogously to $\mathscr{S}(\kappa)$ with $Q_0^+(\kappa)$ replaced by $P_0^+(\kappa)$. Note that while $\mathscr{S}(\kappa)$ is not unitary in general, we do have the relation $\mathscr{S}(\kappa)^* = \mathscr{S}'(\kappa)^{-1}$.

The following result is a simple consequence of Lemma 1.

THEOREM 1. Suppose that conditions (C) and (C_g) hold. Then the distorted plane waves, $w^{\pm}(x; \kappa, \nu)$ ($w'^{\pm}(x; \kappa, \nu)$, and the \mathscr{G} -matrix, $\mathscr{G}(\kappa)$ ($\mathscr{G}'(\kappa)$), have meromorphic continuations to $|\operatorname{Im} \kappa| < \frac{1}{2}\alpha$ given by (1) and (2), respectively. The poles occur among those of $Q_0^{\pm -1}(\kappa)$ ($P_0^{\pm -1}(\kappa)$).

By a resonant state of A at the point κ_0 in $-\frac{1}{2}\alpha < \text{Im } \kappa < 0$ we mean a nontrivial solution, $u(x) \in H^{\alpha} = L_2(R^N; e^{-\alpha|x|} dx)$, of the equation

(3)
$$\int_{\mathbb{R}^N} G_0^+(|x-y|;\kappa_0)q(y)u(y)\,dy = -u(x),$$

where $G_0^+(|x-y|;\kappa_0)$ denotes the outgoing Green's function for the operator $A_0 - \kappa_0^2$. If q(y) is replaced by $\overline{q(y)}$ in (3), we shall say that u(x) is a resonant state of A^* at κ_0 . There exists a resonant state of A (A^*) at κ_0 if and only if $Q_0^{+-1}(\kappa_0)$ ($P_0^{+-1}(\kappa_0)$) fails to exist.

THEOREM 2. Suppose that condition (C) holds. Then $A(A^*)$ has a resonant state at κ_0 if and only if κ_0 is a pole of $\mathcal{S}(\kappa)$ ($\mathcal{S}'(\kappa)$).

Theorem 2 is proved by obtaining explicit formulas relating the resonant states and the \mathcal{S} -matrix. When A is selfadjoint, analogous formulas were obtained by Shenk and Thoe in [3]. In addition, we may show that if $q(x, \varepsilon)$ depends analytically on a complex parameter ε , then so does the \mathcal{S} -matrix. Its poles are fractionally analytic functions of ε . Finally we note that all of the above results may be obtained for more general nonself-adjoint operators. The detailed statements and proofs will appear elsewhere.

REFERENCES

1. C. Goldstein, Perturbation of non-selfadjoint operators. I, Arch. Rational Mech. Anal. 37 (1970), 268-296.

2. ——, Perturbation of non-selfadjoint operators. II, Arch, Rational Mech. Anal. 42 (1971), 380–402.

3. N. Shenk and D. Thoe, Eigenfunction expansions and scattering theory for perturbations of $-\Delta$, Lecture Notes, Rocky Mountain Math. Consortium, 1969.

Brookhaven National Laboratory, 61 Brookhaven Avenue, Upton, New York 11973