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Since the structure of finite abelian groups is so simple, one would 
expect that the cohomology ring H(G, R) of a finite abelian group G 
over a commutative ring R to be completely and explicitly known, 
particularly when the action of G on R is trivial and the ring R is 
some reasonable ring, say the ring Z of integers. Indeed considerable 
work has been accomplished in the computation of a homology of 
finite abelian groups in the context of Eilenberg-MacLane spaces by 
Eilenberg and MacLane [4]; a remarkable algebraic theory around 
this topic was built up by Cartan [2]. Further analysis of the homol­
ogy ring of a finite abelian group is presented in [9]. However, as far 
as we can see, there still is no explicit and functorial description of 
H(G, R) in the general case. The following observations still do not 
fill this gap, but they contribute some new facets and perhaps offer 
a more direct approach to some results which are in the literature. 
Our approach is designed specifically to allow for easy generalization 
to the cohomology ring of a compact abelian group, which we discuss 
in this journal [ó]. The full details and the proofs will appear else­
where. 

Rather than to give too many technical details, we describe the 
essential features of our approach and try to point out where it differs 
from other methods. 

Each finite abelian group G decomposes into a direct sum of cyclic 
subgroups Gi® • • • @Gn of orders zit i = l, • • • , w, such that 
2*|s*+i> 0<i<n; this standard decomposition is not unique, even 
though the Zi are. Since we want a description of H(G, R) which is 
functorial in G(and R), one is faced with two conflicting objectives: 
firstly, the final results must not depend on the given product de­
composition; secondly, one practically has to use the structure theo­
rem for G to obtain any reasonably explicit description for H(G, R). 
Thus one attempts to exploit a standard decomposition initially and 
then to eliminate the dependence of the direct sum decomposition 
by functorial methods. Thus our first step is to describe explicitly an 
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augmented differential bigraded algebra X over Z (which in fact is 
a bigraded differential Hopf algebra) such that X depends on a stan­
dard direct sum decomposition of G and that X defines a resolution 
yielding the cohomology. Our choice is as follows. 

Let 0—>F-+F-̂ >G—»0 be a free resolution of Gt where F is free 
with generators x», i = l, • • • , n and fxi = Zi-xu i = l, • • • , » . We let 
Z[G] denote the integral group ring (with G written multiplicatively), 
and we form X = Z[G]®SF®AF, where the tensor product is taken 
over Z, A F is the exterior algebra over Z of the group F all of whose 
elements have degree one, and where SF is the symmetric algebra 
over Z of F all of whose elements here have degree two; the gradation 
of S F is considered to be the first gradation, and the one of A F as the 
second. The augmentation is derived from the augmentation of Z[G] 
in an obvious fashion. The differential on X is defined as the sum of 
two differentials d and d, which are characterized by the fact that 
they are derivations and Z[G]-module morphisms, and satisfy 
d{\ ® Xi ® 1) = Zi ® 1 ® xif where z» = 7r(#t) + 7r(#,)2 + • • • 
+*(xi)«EZ[G], d(\®\®Xi)=0, o ( l®x t ®l)=0 and ö(l®l®x t) 
= (ir{xi) — 1) ® 1 ® 1 for i = 1, • • • , n. What we have constructed is a 
particular Koszul complex [8, p. 204]; it may very well be equivalent 
to a complex indicated by Tate [lO], and the triple (Z[G] ® AF, SF, X) 
is an acyclic construction in the sense of Cartan [2, p. 3-07]. It is 
however not a "special construction * [2, p. 4-05] but rather resem­
bles certain particular constructions given by Cartan [2, p. 6-09 ff], 
although the choice of the symmetric algebra 5 in place of a poly­
nomial algebra with divided powers seems to set it off from Cartan's 
complexes. In any event, 0<—Z<—X is a finitely generated Z[G]-free 
resolution of Z when X is given the total degree. For cyclic G, we 
obtain the familiar resolution which is to be found in all textbooks. If 
we abbreviate the functor Hom Z [c] ( - , R) with K, where G is still 
allowed to operate on R, then we have H(G, R) = ExtZ[G](Z, R) 
= H(K(X)). Since there are natural i?-module morphisms 
K(X)®RK(X)-+K(X®X)->K(X) (using the comultiplication on 
X), we may utilize the standard morphism H(K(X))®RH(K(X)) 
-+H(K(X)®K(X)) to derive a morphism H(G, R)®RH(G, R) 
—>fl'(G, R) which is exactly the cup product. Let us now assume that 
G acts trivially on R. Then there is a natural isomorphism K(X) 
—»S/?Hom(F, 7?)®/eAflHom(F, R), where the symmetric algebra and 
the exterior algebra are taken over R; the differential of K(X) now 
gets transported into a differential D of bidegree (2, —1) which is 
characterized by the fact that it is a derivation and satisfies D(<t>®\) 
= 0 and D(l ®0) = (</> of) ® 1 for all 0GHom(F, R) (with f from the 
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free resolution of G). Thus we note that K(X) is the E% term of a spec­
tral algebra and it is of the following special type: If yp: A—+B is a 
morphism of i^-modules, we let £2 WO denote the bigraded Hopf 
algebra SRB®RI\RA with a differential D=Drf, of bidegree (2, — 1) 
which is defined to be a derivation and to satisfy, D(bXl)=0 for 
bEB and D{\ ®a) =^(a) ® 1 for aEA. Thus, if we define £8W0, to be 
the bigraded cohomology algebra of £2^) , we have finally arrived at 
the following formula for the graded cohomology ring H(Gt R). 

(1) H(G, R) S E3(Hom (ƒ, R)), with the total degree on Ez. 

Admittedly, the spectral algebra £r(Hom(/, R)) is quite degenerate 
from a spectral algebra point of view, but we found it very useful to 
adopt the frame of mind suited to work with the initial term of a 
spectral algebra and its homology algebra, and in particular to have 
a special bigraded algebra which, relative to the total degree, is iso­
morphic to the wanted cohomology algebra. 

However, in view of the primary objective, namely to find a func-
torial description of H(G, R) as a ring, the isomorphism is not ade­
quate, since the right side depends functorially on ƒ and not on G ; it 
is true that G depends on ƒ since G = coker ƒ, but the converse is in­
correct. However, as a first step in the elimination of/, one can show 
the following 

PROPOSITION 1. The edge terms of £3(Hom(f, R)) depend functorially 
on coker f=G alone and not on f. The horizontal edge term is naturally 
isomorphic to SR Ext(G, R), the vertical edge term is naturally isomer-
phic to Horn (AG, R). 

Thus, by Proposition 1 and (1) we obtain two natural core tractions 
of graded i?-algebras. 

(2) SRExt(G,R)-+H(G,R), 

(3) Hom(AG, R) -> H(G, R). 

There is some evidence that (3) is the right inverse of the morphism 
obtained via the universal coefficient theorem from a monomorphism 
AG—*H*(G, R) described by Eilenberg and MacLane [4, II, 19.3], 
although a direct verification may be intricate. The morphism (2) 
seems to be new. While Hom(ÀnG, R), n > 0 , is frequently zero (e.g. 
when the additive group of R is torsion free), this is never the case 
with Ext(G, R). So H(G, R) is a 5^Ext(G, J?)-module in a natural 
way. The morphisms (2) and (3) together yield a natural morphism 
of bigraded algebras 
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(4) œ0,B: SR Ext(G, R)®B Hom(AG, R)->H(G, R). 

In general, Ü)G,R is neither injective nor surjective (take G 
= Z(2)0Z(4) , i? = Z /4Z and consider C4!A). However, we have the 
following results about (4), the first of which is related to a result of 
Cartan's obtained by different methods [2, p. 9-08]. 

PROPOSITION 2. If R is afield, then Ù)G,R is an isomorphism of Hopf 
algebras. Also, if K is the prime field of R then H(G, R) is isomorphic 
to R®S Tor(G, i£)®ATor(G, K) where the tensor products, S and A, 
are taken either over Z or over K, and where G is the character group of G. 

PROPOSITION 3. If R = Z/mZ and G^Z(m')n with m\ m', then WG,R 

is an isomorphism. 

PROPOSITION 4. If R = Z/mZ and m\ Z\ inhere Zi is the order of the 
smallest cyclic group in the standard direct sum decomposition of G), 
then O)Q,R is an isomorphism. 

Clearly Proposition 3 is a special case of Proposition 4, but the 
former is particularly instructive since here one can obtain H(G, Z) 
as a subring of H(G, R) (except, for degree 0) in the following fashion: 
Since Horn (AG, i£)=AHom(G, R) in this case, by Proposition 4 we 
may identify H(G, R) with E*(i) where i is the identity morphism 
of Hom(G, R); under this identification, the Bockstein derivation on 
H(G, Z/mZ) becomes identified with the differential Di of the spec­
tral algebra Ei{i) as described above. Finally, Z®imDi (with Z in 
degree 0) as a graded algebra is isomorphic to H(G, Z). This observa­
tion is typical for the utilization of the Bockstein morphism in the 
present context. 

After all this, an explicit description of the ring H(G, Z) is still 
missing, but we do obtain partial results. In this case the vertical 
edge term Horn (AG, Z) of £3(Hom(f, R)) is zero (except in bidegree 
(0, 0)). However, the third vertical column in E3(Hom(f, R)) (which 
is the first nontrivial one) takes over and brings significant informa­
tion. In fact, let Jlf< = £*-*-»(Hom(ff R)) and M=M2+M* 

PROPOSITION 5. The submodule M of £3(Hom(/ , R)) depends only 
on c o k e r / = G and not onf. The group Mi+1 is naturally isomorphic to 
A*<?, where G is the character group of G. Specifically, if Hl{G, Q/Z) 
—>Hi+1(G, Z) is the connecting morphism deduced in the long cohomology 
sequence, and Horn (AG, Q/Z)—*H(G, Q/Z) is the natural morphism of 
graded groups (3) {which prevails even if R is just a group and not a 
ring), then the composition Hom(A'G, Q/Z)—>Hi+1(G, Z) is injective 
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and has Mi+1 as its image, if H(G, Z) and £3(Hom(/, Z)) are identified 
under (1). 

PROPOSITION 6. Under the conditions of Proposition 5, the ring 
H(G, Z) is generated by the submodule Z+M and by no proper sub-
module of Z+M. Also H(G, Z) is a torsion-free SG-module via (2) 
{where Ext(G, Z) is naturally isomorphic to the character group (?) and 
as an SG-module is generated by Z+M. 

Note that if in the standard decomposition of G we have n sum-
mands, then elements of degree as high as n + \ are needed to generate 
H(G, Z) as a ring. (This would seem to contradict an unproved asser­
tion in [S], according to which H(G, Z) is generated by the elements 
of degree 3 or less, regardless of G.) 

The authors are happy to acknowledge valuable correspondence 
with S. MacLane who, in particular, pointed out to them some of the 
pertinent literature. 
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