
RESIDUALLY FINITE GROUPS 

BY WILHELM MAGNUS1 

1. Introduction. The definition of groups in terms of generators 
and defining relations became important when H. Poincaré discov­
ered the fundamental (or first homotopy) group of an arcwise con­
nected topological space. In many cases, these fundamental groups 
can be defined easily in terms of generators and defining relations 
but not otherwise in a purely group theoretical manner (i.e. without 
reference to the underlying space). 

We shall write 

(1.1) <*,;**> 

for a group G with generators aa and defining relations i?\ = 1. Here 
<r, X are, respectively, elements of indexing sets 2 , A where 2 is non­
empty, and the R\ (the "relators") are finite sequences or words in the 
aa, a~l. The unit element is denoted by 1. If A is empty, G is called 
free, and the aff are called a set of free generators. We shall call (1.1) 
a presentation of G and shall talk respectively of finitely generated, 
finitely related and finitely presented groups whenever S or A or both 
are finite sets. 

I t is rather obvious that any sets of symbols aai a~l and words R\ 
in these symbols define a group. However, it turns out to be extremely 
difficult to develop methods which allow one to extract information 
about groups given by a presentation (1.1) in a purely algebraic man­
ner. The fundamental problems arising here were formulated and 
investigated by Dehn [17]. The first of these, the word problem, is 
the question: Which words in the generators of a group G represent 
the unit element? I t became famous when Novikov [47], Boone [13] 
and Britton [15] exhibited finitely presented groups in which there 
is no general and effective procedure for determining whether a word 
in the given generators represents the unit element as a consequence 
of the given defining relations. 

Investigating certain finitely presented groups arising from topol­
ogy, Dehn [17], [18] found the available algebraic methods inade­
quate for this purpose and introduced geometric (including topologi-
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cal) methods to solve group-theoretical problems. Even now, two-
thirds of a century and many hundred research papers later, there 
are some problems concerning fundamental groups of topological 
spaces which can be solved easily by topological methods but not at 
all algebraically. A simple example is provided by the fundamental 
groups $g of two-dimensional, closed, orientable manifolds of genus 
g è 1. $g has a presentation 

0 - i - i 
(1.2) (aly n 

dp av+g(lV(lv+Q) 

as a one-relator group. All subgroups of &g which are of finite index 
in $g are again groups $h where h^g. But for g> 1, this has not been 
proved algebraically, although it follows topologically from basic 
theorems about the classification of closed two-dimensional manifolds 
and about covering spaces. 

The oldest and simplest way of obtaining at least partial informa­
tion about a group G presented in the form (1.1) is to abelianize it 
which means studying the quotient group G/G' of the commutator 
subgroup (also called the first derived group) of G. Generalizing this 
approach, one may try to find, for a given G, quotient groups which 
are "well known" for instance in the sense that they have a solvable 
word problem, and sufficiently numerous in the sense that knowing 
them provides a solution of the word problem in G. This situation 
will arise if, for every element g £ G , gF^l, there exists a finite homo-
morphic image G* of G such that g*5^1, where g* is the map of g in 
G*. Such a group G is said to be residually finite. Of course, not all 
groups have this property. For instance, G. Higman [28] gave an 
example of an infinite group with four generators and four defining 
relations, the only finite quotient group of which is the trivial one. 
However, we can describe classes of groups which are residually 
finite and which are of interest either because of other group theoreti­
cal properties or because they occur in problems of geometry. 

2. Residual properties. Let C be a nonempty class of groups (which 
may, however, consist of a single group only). Following P. Hall, we 
shall say that a given group G is residually C if, for any element g 9e I 
in G there exists a quotient group G*(g) belonging to C such that the 
map g*£G*(g) of g is not the unit element of G*(g). Equivalently, 
we can say that the intersection of all those normal subgroups N of 
G for which G/N belongs to C is the unit element of G. If the groups 
of the class C are characterized by a particular property ir (e.g. by 
the property 717 of being finite) we shall also say that G is residually w. 
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If G is residually C and if C' is a class of groups such that each 
group in C is residually C', then G is also residually C'. To give ex­
amples, let Fn denote the free group on n free generators. Then, for 
w ^ 2, Fn is residually F2 (see [48]) and F2 is residually finite [24], 
therefore Fn is residually finite for all n since n — 1 is a trivial case. Or 
consider the groups $g defined by (1.2). I t can be shown [20] that, 
for g ^ 2 , $g is residually F2 and therefore residually finite. Because 
of Property II of residually finite groups (as formulated below), this 
result has topological implications [31 ] . 

For any finitely generated residually finite group G the following 
theorems have been proved : 

I. G has a solvable word problem (A. Mostowski [43], McKinsey 
[40]). 

I I . G is hopfian, that is every homomorphic mapping of G onto itself 
is an automorphism (Malcev [39]). 

III. The automorphism group of G is residually finite (G. Baumslag. 
For a proof see p. 414 in [37]). This proves that the automorphism 
groups of Fni $o> a n d a l s o Artin's braid groups [ l ] are residually 
finite. 

IV. If G is infinite, it is a totally disconnected topological group with 
a nontrivial topology in which the normal subgroups of finite index form 
a basis for the open sets containing the unit element. The completion G of 
G under this topology is the inverse (also called "projective") limit of 
a sequence of finite quotient groups of G (i.e. G is a profinite group as 
defined by Serre [5l]). For details and results see Marshall Hall, Jr. 
[24]. 

Obviously, all subgroups of a residually finite group G are also re­
sidually finite. However, this need not be true for all quotient groups 
of G. For instance, F2 is residually finite but its quotient group B 
defined by 

(2.1) {a^b^a-Wab-*) 

is not. The proof (due to G. Baumslag) is so simple that it can be 
given in a few lines. Let B* be a finite homomorphic map of B and 
let a, j3 be the maps of a, b. We have from (2.1) that 

arnb2nan = bzn. 

Therefore, if a is of order n, the order of j8 divides 

k = 3n - 2n. 

Since k is coprime with 2 and 3, ]8 is a power of |82 and the map ft of 
J1 = a""16a in B* is a power of $\ which in turn is j33. Therefore the map 
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of 

(2.2) c = 6 lV l 6 i i 

in any finite quotient group 5 * of B is the unit element. However it 
can be shown by standard methods [35] that c^lmB, and therefore 
B is not residually finite. (It can even be shown [12] that B is non-
hopfian.) 

K. Gruenberg [22 ] introduced a class of properties of groups which 
have essential features in common with the property ir/ (of being 
finite). They are called root properties and are defined as follows: 

A property p is called a root property of a group G if: 
(i) All subgroups of G also have property p. 
(ii) The direct product of any two groups with property p again 

has property p. 
(iii) Given any three groups G0DGOG2, each normal in its prede­

cessor and such that G0/G1 and G1/G2 have property p, there exists a 
subgroup N in Gi which is normal in Go such that Go/N also has 
property p. 

Important root properties are: Being finite, being solvable, and 
the property denoted by TT(J>) which means "being a group of order a 
finite power of the prime number p." However, nilpotence is not a 
root property since it fails to satisfy (iii). Gruenberg [22] proved: 

If p is a root property, then every free product of residually p-groups 
is itself residually p if and only if every free group is residually p. 

Since free groups are residually ir(p) for all primes p [24] and, 
therefore, residually finite and residually solvable, free products of 
respectively residually T(P), residually finite, residually solvable 
groups have the same residual properties. Of course, residually ir(p) 
implies residual finiteness, but solvability (let alone residual solva­
bility) does not, not even if we restrict ourselves to solvable groups S 
with maximum condition ( = ascending chain condition) for normal 
subgroups. (S will then be finitely generated.) A counterexample 
constructed by Gruenberg [22] is based on the following theorem 
[22]: 

The (restricted) wreath product of the group G by the group U (where 
U is in its regular representation as a permutation group) is residually 

finite if and only if both G and U are residually finite and either U is 
finite or G is abelian. 

The counterexample mentioned above will be obtained by choosing 
for U an infinite cyclic group and for G the nonabelian group of order 
six. 
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3. Residual finiteness. A large and important class of residually 
finite groups is described by the following theorem proved by A. 
Mal'cev [39]. 

Let Rbea commutative field and let M be a finite set of n-by~n matrices 
with elements in R and with nonvanishing determinants. Then the ma­
trices in M generate a residually finite group. 

Mal'cev's theorem proves, for instance, that Fuchsian groups are 
residually finite. (These are the finitely generated groups of fractional 
linear substitutions with real coefficients and determinant + 1 in a 
complex variable z which are discontinuous in the upper z-halfplane.) 
Some of them play an important role in the theory of complex vari­
ables (uniformization theorems) and in number theory. Their presen­
tations in terms of generators and defining relations have been given 
by Fricke [21 ]. The fundamental groups <£a in (1.2) are special cases 
of Fuchsian groups. So are the groups resulting from the reflections 
of a noneuclidean triangle in its sides; they are defined by two gen­
erators a, b and defining relations 

a« = j/> « (ab)y = 1 

where a, |8, y are positive integers such that 

1 1 1 
—+ —+ —<1. 
a 0 y 

They have been investigated repeatedly [19], [41 ], but their re­
sidual finiteness cannot yet be proved in all cases without using 
their geometric definition. 

Naturally, free groups have an abundance of residual properties 
because of the basic property of Fn that every group on n generators 
is a quotient group of F„. Free groups are residually nilpotent [36], 
that is, the groups of their lower central series intersect in the unit 
element. They are also [32], in the case of a rank ^ 2 , residually Tnt 

where Tn is the single-relator group 

(a,b;a») 

and possibly residually S for a large number of other single-relator 
groups 5. For wè 2, Fn is not only residually ir(p) for every prime 
number p [24], it is also residually A and residually PSL (2, pk) for 
fixed ife and variable ƒ>, where A denotes the class of alternating groups 
(or merely the class of alternating groups of degree p) and PSL (2, pk) 
denotes the class of groups of fractional linear substitutions with 
determinant + 1 , in a single variable and over a field of pk elements 
[48], [32]. (Being residually A also implies that in Fn the subgroups 
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of prime index intersect in the unit element [32].) Here, incidentally, 
the story ends. It is not even known whether F2 is residually PSL 
(3, p) where p runs through all primes or residually PSL (2, 2*) where 
k runs through the positive integers. 

The theorems stating residual finiteness for certain classes of groups 
G use mostly one of two types of assumptions: 

I. G contains a finite sequence of subgroups Gv, v = 0, 1, • • • , n, 
where G0 = G, Gn = 1 and where G,+i is normal in Gv such that C/G^i 
belongs to a specified, rather restricted class of groups, being for in­
stance a finitely generated group of a nontrivial variety. (For this 
concept see the expository article by B. H. Neumann [45] or the 
monograph by Hanna Neumann [46].) 

II. G is the generalized free product of two groups Gi, G2 with an 
amalgamated subgroup H, where Gi, Gi are residually finite or in 
specified classes of residually finite groups and where the restrictions 
on H are rather severe. Nevertheless, the results using assumptions 
of this type appear to be very promising for the investigation of some 
groups arising in topology, particularly knot groups. 

The first theorem using assumptions of type I is due to K. Hirsch 
[30] and states: 

Polycyclic groups are residually finite. 
There are several equivalent definitions for a polycyclic group G. 

They are: 
(i) There exists a finite sequence 

G = Go, Gi, G2, • • * , Gk = 1 

of subgroups G„ each normal in the preceding one, such that G,/Gp+i 
is cyclic. 

(ii) G is solvable (i.e. the derived series G', G", • • • terminates 
with the unit element after finitely many steps) and G/G', G'/G", • • • 
are all finitely generated. 

(iii) G is solvable and satisfies the maximum ( = ascending chain) 
condition for subgroups. 

Special cases of polycyclic groups are the finitely generated nil-
potent groups (i.e. groups for which the lower central series termi­
nates with the unit element after a finite number of steps). Gruenberg 
[22] showed that "residually nilpotent" and "residually of prime 
power order" are identical properties for finitely generated groups. 

A strong generalization of Hirsch's theorem was proved by P. Hall 
[26]: 

Every finitely generated group G with an abelian normal subgroup N 
and nilpotent quotient group G/N is residually finite. 
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P. Hall observes that groups of this type have the property that all 
of their quotient groups are also residually finite. They are, in his 
words, residually finite by general dispensation, whereas free groups 
share this property only by special grace. Earlier (Theorem 7 of [25]) 
P. Hall had shown that even finitely generated solvable groups may 
not be residually finite if one goes beyond metabelian groups M (i.e. 
groups for which ikf" = l ) . He constructed a two-generator group G 
the center C of which is an arbitrary countable abelian group (which, 
obviously, need not be residually finite) such that G/C is metabelian. 

The sharpest results about residually finite solvable groups seem 
to be those of D. J. S. Robinson [49] who proved: 

Let A 0 be the class of abelian groups in which the maximum num­
ber of generators for all finitely generated torsion free subgroups and 
for all finitely generated subgroups of order a power of p (any prime 
number) is bounded. Let So be the class of groups G = Go for which 
there exists a finite sequence of subgroups Go, Gi, • « • , Gw = l, each 
normal in the preceding one, such that Gv/Gp+1 belongs to A0 for 
v = 0, 1, • • - , » — 1. Then a group in So is residually finite and every 
maximal subgroup is of finite index if and only if the center of its 
Fitting subgroup ( = the product of all normal nilpotent subgroups) 
is reduced. 

Whereas even the finitely generated groups of most solvable vari­
eties of groups are not always residually finite, the free groups of 
these varieties fare much better. K. Gruenberg [22 ] showed that any 
free polynilpotent group is residually ir(p) for all but a finite number 
of primes p and remarks that a result of P. Hall even allows one to 
state this result for all p. Here a free polynilpotent group is defined 
as follows: Let F be a free group, let JF$1 be the i,th group of its lower 
central series (where F=Fi), and define recursively 

(3.1) ^ti,»2,...,in, fe, ii, * • • ,in positive integers) 

as the inth group of the lower central series of 

Then the quotient group of F with respect to the group (3.1) is called 
free polynilpotent of class row, 

(ii — 1,*2 — 1, • • • >*» — 1)-

A generalization of this result is the following: Let the finite group 
G be presented in the form F/R, where R is a normal subgroup of the 
free group F which shall have a rank not less than 2. Then Lihtman 
[34] showed (generalizing Gruenberg [23]): 
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is residually nilpotent if and only if the order of G is a power of a 
prime. 

G. Baumslag [lO] showed: If U and V are varieties of groups, and 
if UV= W denotes the variety of groups G having a normal subgroup 
N in U such that G/N belongs to V, then the free groups of W are 
residually F2(W), where F2(W) is the free two-generator group of W. 

For certain varietal products (generalized averbal" products as 
introduced by S. Moran [42 J) of groups in a variety U with abelian 
groups, G. Baumslag [ô] characterized those groups which are resid­
ually torsion free nilpotent. 

We shall turn now to results based on assumptions of type II. 
Their significance is due to the fact that the generalized free products 
are the most versatile tool in the investigation of finitely presented 
groups. The solution of the word problem for single-relator groups 
[35], the extraction of roots of group elements [35], [44] and the 
construction of many fundamental groups, including the groups $g 

in 2.1 (for g > l ) and certain knot groups described below, all are ap­
plications of the theory of generalized free products. Another applica­
tion is the construction of a nonhopfian (and therefore not residually 
finite) finitely presented group by G. Higman [27] which was the 
first one discovered. It is the group defined by 

(a, b, c; arlcac~2, b^cbcr2) 

which is the generalized free product of the one-relator group 

(a, c ; <rlccur*\ (b, c; b^cbc2) 

with the cyclic subgroups generated by c amalgamated. Although 
these one-relator groups are still residually finite, they have a rather 
complicated subgroup structure. However, even the generalized free 
product of two isomorphic two-generator groups which are nilpotent 
of class two and where the amalgamated subgroups are free abelian 
of rank two need not be hopfian (let alone residually finite), as was 
shown by G. Baumslag [3]. 

For free products (without amalgamations) of residually finite 
groups, Gruenberg's theorem on root properties establishes residual 
finiteness. What is known, in the line of positive results, about gen­
eralized free products is largely summarized in a paper [5] by G. 
Baumslag, who also reports on some unpublished work by G. Higman. 
Some of the results are: 

Let A, B be groups, and let H and K be, respectively, subgroups of 
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A and B which are mapped isomorphically onto each other by an 
isomorphism 0. Then the free product of A and B with amalgamation 
of H and K under 0 is residually finite if 

A and B are finite or if 
A and B are residually finite and H is finite or if 
A and B are finitely generated and nilpotent and if H is cyclic or if 

H as well as K contains any element x if it contains a power of x, or if 
A and B are polycyclic and K is in the center of B, or if 
A and B are polycyclic, H is normal in A and K is normal in B. 
Il A and 23 are finitely generated and nilpotent, any generalized 

free product with amalgamated subgroups is still the extension of a 
free group by a residually finite group. The same is true if A and B 
are merely residually finite and if the isomorphism between H and K 
can be extended to an isomorphism between A and B. 

Other results by G. Baumslag [4], [ l l ] state that a generalized 
free product of a free group F and a free abelian group A of countable 
rank is residually free (and thus residually finite) if the amalgamated 
subgroup is infinite cyclic, its own centralizer in F, and generated by 
a free generator of A. Also, a free group arising from F by extraction 
of an rath root is residually finite. This is a generalization of a result 
found by B. Chandler [16] which in turn shows the residual finiteness 
of the groups <t>g. The proofs depend on realizations of free groups as 
subgroups of the multiplicative group of rings; in Chandler's paper, 
the ring is a matrix representation of a ring introduced by Malcev, 
whereas Baumslag constructs new rings for his purposes. G. Baums­
lag also proved residual finiteness for certain one-relator groups which 
contain elements j^l of finite order [9]. 

P. Stebe [52] used generalized free products to prove residual 
finiteness for a class of knot groups. The group property needed here 
will be called TC\ it is stronger than residual finiteness and is defined 
as follows: G is xc if for any two elements gi, g2 in G which are such 
that for all integers m 

gi ^mgZ 

there exists a finite homomorphic image G* such that the maps g*f g* 
of gi, g2 in G* also satisfy 

* *m 
£l 3* g2 . 

(If we chose g2 = l , we have the condition for residual finiteness.) 
Now we have: 

Let A„ v=*l, • • • , », be finitely generated, isomorphic groups 
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which are 7rc, and let ®„ be the isomorphisms mapping A\ onto Av. 
Let C\ be a cyclic subgroup of Ax and let Cv be its map under dv. Let 
G be the generalized free product of the Av with amalgamation of G 
and C„ (for p = 2, • • • , w) under the isomorphism ©„. Then G is 7rc. 
(It should be noted that the isomorphisms between the amalgamated 
subgroups are extended to the factors of the generalized free product.) 

As a consequence we have: Let G be finitely generated and TC. Let 
Gi be defined by forming first the free product of G with an infinite 
cyclic group generated by an element x and then adding either one 
of the two relations 

xm = g, orlflxg = 1 ; g G G. 

Then Gi is also TTC. This implies that the knot groups defined by 
Brauner [14] are residually 7rc. These knot groups form a rather large 
class of groups which are defined only recursively. They are of special 
interest since they are associated with the algebraic-type singularities 
of analytic functions of two complex variables. 

As a last item to report, it should be mentioned that residually 
finite groups G\ and G2 need not be isomorphic if their sets of finite 
quotient groups coincide. An example (still unpublished) was found 
by Joan Landman-Dyer. In this example, all possible finite quotient 
groups of Gi and G2 are nilpotent. Earlier, G. Baumslag [8] had al­
ready shown that there exist groups G which are residually nilpotent 
and not free but for which the quotient groups G/Gn of the groups Gn 

of the lower central series and also G/G" coincide with those of a 
finitely generated free group F. This implies that the sets of all nil-
potent and all metabelian quotient groups of F and G coincide. 

Some of the references listed below are not referred to in the text 
but are relevant to the topics mentioned there. 
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