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An H-space is a topological space X with basepoint e and a multipli­
cation map m: X2 = XXX—>X such that e is a homotopy identity 
element, (We take all maps and homotopies in the based sense. We 
use k-topologies throughout in order to avoid spurious topological 
difficulties. This gives function spaces a canonical topology.) We call 
X a monoid if m is associative and e is a strict identity. 

In the literature there are many kinds of ü-space: homotopy-
associative, homotopy-commutative, ^««-spaces [3], etc. In the last 
case part of the structure consists of higher coherence homotopies. In 
this note we introduce the concept of homotopy-everything H-space 
{E-space for short), in which all possible coherence conditions hold. 
We can also define £-maps (see §4). Our two main theorems are 
Theorem A, which classifies E-spaces, and Theorem C, which pro­
vides familiar examples such as BPL. Many of the results are folk 
theorems. Full details will appear elsewhere. 

A space X is called an infinite loop space if there is a sequence of 
spaces Xn and homotopy equivalences Xnc^tiXn+i for n^O, such that 
X = Xo. 

THEOREM A. A CW-complex X admits an E-space structure with 
TQ(X) a group if and only if it is an infinite loop space. Every E-space X 
has a (i'classifying space" BX, which is again an E-space. 

1. The machine» This constructs numerous J3-spaces. 
Consider the category é of real inner-product spaces of countable 

(algebraic) dimension and linear isometric maps between them. As 
examples we have JR00 with orthonormal base [eu e2, e8, • • • }, and its 
subspace Rn with base {ei, £2, • • • , en], which is all there are up to 
isomorphism. We topologize ó(Af B), the set of all isometric linear 
maps from A to B, by first giving A and B the finite topology, which 
makes each the topological direct limit of its finite-dimensional 
subspaces. 

LEMMA. The space é(A% R°°) is contractible. 

This is a consequence of two easily constructed homotopies: 
(a) ii~i2:A-+A®A, 
(b) i\C^u : R^—ïR00 ® -R00, for some isomorphism u. 
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Suppose we have a functor T defined on the category $, taking 
topological spaces as values, and a continuous natural transformation 
co: TAXTB->T(A ®B) called Whitney sum, such that : 

(a) Tf is a continuous function of ƒ Çzé(A, B) ; 
(b) TR° consists of one point; 
(c) o) preserves associativity, commutativity and units; 
(d) TR00 is the direct limit of the spaces TRn. 

THEOREM B. TR00 is an E-space. If T happens to be monoid-valued$ 

the classifying space [2] BTR00 agrees with that from Theorem A. 

As a (noncanonical) multiplication on TR00 we take 

TR™ X TR00 -» T(R°° © R°°) —> TR00, 
co Tf 

where/ : .R00©/?00—»2?°° is any linear isometric embedding. The Lemma 
provides homotopy-associativity, since ƒ o ( / © 1 ) ~ / o (1©/), homo-
topy-commutativity, and all higher coherence homotopies. 

In the examples below we define TA explicitly only for finite-
dimensional A, and note that axiom (d) extends the definition to the 
whole of 6. In each case the maps Tf and the Whitney sum co are 
obvious, in view of the inner products. 

EXAMPLES. 1. TA = 0(A), the orthogonal group of A. Then TR00 = 0. 
2. TA = U(A ® C), the unitary group of A ® C. Then TR00 = U. 
3. TA ~BO(A), a suitable classifying space for 0(A), for example 

that given by [2]. Then TR» = BO. 
4. TA = F(A), the space of based homotopy equivalences of the 

sphere SA, which is the one-point compactification i W o o of A, with 
00 as basepoint. Then TR00 = F. 

There is also a semisimplicial analogue, in which T takes semisim-
plicial values and ó(A,B) is replaced by its singular complex. 

5. TA =TopC<4). A ^-simplex of Top(^4) is a fibre-preserving 
homeomorphism of A XAk over Ak, where Ak is the standard ^-simplex. 
Then rjR°°=Top. 

6. The semisimplicial analogues of Examples 1-4. 
7. The orientation-preserving versions of Examples 1-6. 
8. TA=PL(A), defined as Top(^l) except taking only piecewise 

linear homeomorphisms of A XA*. This fails. To cure this we need a 
new machine. Suffice it to say that as a fe-simplex of (P(A, B) we take 
a pair (£, ƒ), where £ is a p. 1. subbundle of the product bundle B XA* 
over Ak, a n d / : £© (A XAk)^B XAk is a p. 1. fibrewise homeomorphism 
that extends the inclusion of £. 
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THEOREM C. We have the Espaces O, SO, F, U, PL, Top, etc., their 
coset spaces F/PL, T — "PL/0" etc., and all their iterated classifying 
spaces. The natural maps between these are all E-maps, including 0-+PL 
and PL->T. 

2. Categories of operators. There are two variants: with or without 
permutations. 

DEFINITION. In a category of operators (B 
(a) the objects are 0, 1, 2, • • • ; 
(b) the morphisms from m to n form a topological space (B(m, n), 

and composition is continuous; 
(c) we are given a strictly associative continuous functor © : (B X(B 

—KB such that m®n = m+n; 
(d) if (B has permutations, we are also given for each n a homo-

morphism Sn—»(B(w, n), Sn the symmetric group on n letters. (We 
omit any symbol for this homomorphism.) In the case with permuta­
tions we impose two further axioms: 

(i) if irCzSm and p&Sn then ir@p lies in Sm+n and is the usual sum 
permutation; 

(ii) given any r morphisms a*-: mc^ni and 7r£S f , we have 

7r(n) o (a\ © a2 © • • • © a r) = fl"(ai © ai © • • • © ar) o 7r(m), 

where m=2ra ; , n = '2ni, w permutes the factors of ai©aj2ffi • • • ®ar, 
and the permutation 7r(n) £ S n is obtained from ir by replacing i by a 
block of ni elements. We require functors to preserve all this structure. 

EXAMPLES. 1. Endx, for a based space X. Endx(m, n) is the space 
of all (based) maps Xm—>Xn, where Xn is the nth power of X. The 
functor © is just X. This example has permutations. 

DEFINITION. The category (B of operators acts on X, or X is a 
(&-space, if we are given a functor (B—»End*. 

2. Ci. &(m, n) is the set of all order-preserving maps { l ,2 , • • • ,m\ 
—>{l, 2, • • • , n). Then an Ct-space is a monoid. 

3. $. S(m, n) is the set of all maps {l, 2, • • • , rn}—±{\, 2, • • • , n\, 
including permutations. Then an S-space is an abelian monoid. 

DEFINITION. We call X an Espace if we are given a category (B of 
operators with permutations acting on X, for which (B(w, 1) is con-
tractible for all n. (We do not single out any canonical (B.) 

4. #. Define ê(rn, n) =$((R°°)m, (R°°)n) as in §1. By the Lemma any 
4-space, for instance TR», is an .E-space. 

5. Qn, a category of operators on the ^th loop space X = QnF, the 
space of all maps (In, d/n)—»(F, o), where In is the standard w-cube, 
dln its boundary, and o the basepoint of F. A point aGQn(kt 1) is a 
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collection of k w-cubes 7? linearly embedded in In
1 with disjoint in­

teriors, and with axes parallel to those of In. I t acts on X as follows: 
given (fuf2, • • • , fk)&Xk, the map a(fu f2, • • • , ƒ*) : In-> Y is given 
by ƒ» on each little cube if, and zero elsewhere. Similarly for Qw(&, r). 
We topologize Q„(&, 1) as a subspace of JR2Aîn. We observe that Qn(&, 1) 
is (^ — 2)-connected, so that as n tends to oo, Theorem A becomes 
plausible. 

We say the category (B of operators, without permutations, is in 
standard form if every morphism aim-^n has uniquely the form 
ai@a2@ • • • ®an, where a«:w<—>1. For categories with permuta­
tions the definition is more complicated. Of our examples, 2, 3 and 5 
are in standard form, but 1 and 4 are not. 

3. The bar construction. Suppose given a category (B of operators, 
in standard form. We consider words [ceo|«i| • • • |«A]> where k*z0 
and each a»- is a morphism in (B and a0 o ai o • • • o a& exists. 

DEFINITION. The category W°(& has as morphisms from m to n 
those words [ce0| «i | • • • | ak] for which the composite exists and is in 
(B(m, n), subject to the relations and their consequences: 

[ a © j 8 ] = [ a © l | l © j 8 ] = [ l © | 8 | a © l ] for appropriate identities 1; 
[ l] is an identity in W°(&; 
[a\ T] = [a o w] and [w\ /3] = [ir o /3] if (B has permutations w. Com­

position in W°(& is by juxtaposition. 
To form the category PF(B, we take for each morphism x in PT°(B a 

cube C(x) of suitable dimension, having x as vertex, and identify the 
faces not containing x with certain cubes C(xi) of lower dimension, 
where Xi runs through the words formed from x by one "amalgama­
tion." The categories W°(& and W(& inherit obvious identification 
topologies. For composition we have C(x) o C(y)C.C(x o y) as a face 
containing xoy, and © : C(x) XC(y)=C(x®y). The augmentation 
e: W(&—»(B is defined by e[ce0|«i| • • • \oik] =ce0 o ai o • • • oak and 
eC(x) = ex. 

A PFCt-space, with a as in §2, is approximately an ^ - s p a c e [3]. 
In particular, the familiar pentagon in W(X(4ti 1) is now subdivided 
into five squares. 

For the following theorems we need a slightly different category (B' 
augmented over (B, in which (B'(l, 1) differs from (B(l, 1) by a whisker. 
However, we may replace (B' by (B in the theorems whenever the 
identity 1 in (B(l, 1) is an isolated point. 

We call an augmentation functor 0: <3—»(B ftbre-homotopically trivial 
if for each n there exists a section x- ®(^, l)-*<5(», 1) such that xod 
is fibrewise homotopic to the identity map of Q(n, 1), 5n-equivari-
antly if (B and 6 have permutations. 
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THEOREM D. (a) e: W(&'—>($>,-*(&isfibre-homotopically trivial. 
(b) Given any category of operators 6 augmented over (B by a fib?e-

homotopically trivial functor, there exists a functor W(&'—>(2> that lifts 
W(B'-->(B. (It is not unique.) 

THEOREM E. Suppose X and Y have the same homotopy type, and 
W(&' acts on X. Then we can make W($>' act on Y. 

4. Maps between //-spaces. Suppose X and Y axe fiRB-spaces and 
ƒ : X—» Y a map. We call ƒ a W(Sb-homomorphism if it commutes with 
the action of W(&. We need a weaker homotopy notion. 

Let <£n be the "linear" category with objects 0, 1, 2, • • • , n and 
one morphism i—*j whenever i^j. We can generalize the bar con­
struction in §3 to form TF((BX £ n ) , a category which we make act on 
(w+l)-tuples of spaces. (Note that in (BX «Cn © is not quite a functor, 
because it is not everywhere defined.) We define a homotopy (R-map 
from X to F as an action of W((BX£i) on the pair (X, F), that in­
duces the given PRB-structures on X and F. Similarly, an action on 
£-spaces X and F of a suitable category Q such that G(Xn, F) is 
contractible for all n is called an E-map. 

THEOREM F. Let X and Y be W&-spaces, and ƒ : X—» F a homotopy 
&-map that is also a homotopy equivalence. Then any homotopy inverse 
g: Y—+X admits the structure of homotopy ($>'-map. 

We cannot form the category of PRB-spaces and homotopy (B-maps, 
because unless one of them is a PF(B-homomorphism, the composite 
of two homotopy (B-maps is defined only up to a homotopy, which is 
defined only up to a homotopy, which is . . . . Instead we form a semi-
simplicial complex K, whose w-simplexes are actions of W((BX £n) on 
(n + 1)-tuples of spaces; in particular its vertices are TF(B-spaces and 
its edges are homotopy (B-maps. 

THEOREM G. This complex K satisfies the ^restricted Kan extension 
condition" in which the omitted f ace is not allowed to be the first or the 
last. 

This result provides everything we need for composition up to 
homotopy etc., and allows the formation of the category of W(&-
spaces and homotopy classes of homotopy (B-maps. 

5. Structure theory. The following theorem is essentially due to 
Adams. 

THEOREM H. Given a Wd-space X, there is a universal monoid MX 
equipped with a homotopy d-map i: X—>MX> such that any homotopy 
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(H-mapf: X—>G to a monoid G factors uniquely as goi with g a monoid 
homomorphism. Moreover, if X is a CW-complex the map i is a homo-
topy equivalence. 

Our main technical result for proving Theorem A is: 

THEOREM J. Let X be an E-space, so that in particular it admits a 
Wa-structure. Then the classifying space [l\ BMX is also an E-space. 

For Theorem A we then define BX = BMX. 

6. Cohomology theories. Given an £-space Y such that F is a 
CW-complex and w0(Y) is a group, we define [ l ] a graded additive 
cohomology theory on CPF-pairs by setting 

tn(X, A) = [X/A, BnY], t~n(X, A) = [X/A, ÛWF] for w ^ O , 

whose coefficient groups vanish for n>0. Let us call a cohomology 
theory with this property connective. 

THEOREM K. Every connective graded additive cohomology theory on 
CW-pairs arises from some such Espace F, which is uniquely deter­
mined up to homotopy equivalence of Espaces. 

In particular the £-space ZXBU gives rise to the connective K-
theory cK. This is more usually obtained by appealing to Bott peri­
odicity and killing off the unwanted coefficient groups. In other cases 
we cannot appeal to Bott periodicity: 

DEFINITION. We define connective piecewise linear K-theory cKPL by 
using the .E-space ZXBPL: for n>0 we set 

cKn
PL(X, A) = [X/A, Bn(Z X BPL)]. 
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