CYCLOTOMIC IDEALS IN GROUP RINGS

BY S. BACHMUTH AND H. Y. MOCHIZUKI

Communicated by Walter Feit, May 5, 1966

Let G be a group of exponent n and Z(G) the integral group ring of G. We call the ideal of Z(G), which is generated by all elements of the form $1+u+u^2+\cdots+u^{n-1}$ where u runs through all elements of the group G (including 1), the cyclotomic (or Burnside) ideal $\Im(n)$. The motivation for the study of these ideals is the close connection of $\Im(n)$ with the Burnside group $F/R'F^n$ where G=F/R is represented as a factor group of a free group, R' is the commutator subgroup of R, and F^n is the group generated by nth powers of elements of F. Specifically, one considers $RF^n/R'F^n$ as a module over $Z_n(F/RF^n)$ coupled with the observation that for u in $RF^n/R'F^n$ and x in F/RF^n ,

$$u^{1+x+\cdots+x^{n-1}} = u(xux^{-1})(x^2ux^{-2})\cdot \cdot \cdot (x^{n-1}ux^{-n+1}) = (ux)^n.$$

We hope this announcement helps to initiate a study of the quotient rings $Z(G)/\Im(n)$. We restrict ourselves to the commutative case, where G is a direct product of two cyclic groups of order n. We denote by Σ the augmentation ideal of Z(G); i.e., the ideal generated by (1-g) for all g in G. Throughout, the letter F will always mean a free group of rank 2.

THEOREM 1.

- (i) $\Sigma^{p-1} = \Im(p)$, $(\Sigma^{p-2} \oplus \Im(p))$, for any prime p.
- (i) i $\Sigma^4 \subseteq \Im(4)$, $(\Sigma^3 \oplus \Im(4))$.
- (iii) $\Sigma^{12}\subseteq\Im(9)$, $(\Sigma^{11}\oplus\Im(9))$.

The application to the Burnside groups is the following:

COROLLARY 1.

- (i) $F/F''F^p$ has nilpotency class p-1.
- (ii) $F/F''F^4$ has nilpotency class 4 or 5.
- (iii) $F/F''F^9$ has nilpotency class 12 or 13.

Part (i) of Corollary 1 is due to Meier-Wunderli [1], and Part (i) of Theorem 1 follows easily from his results. In general, our aim is to establish bounds on the nilpotency class of $F/F''F^n$ in the case where $n = p^o$ is a power of a prime, and in the case where n is a composite, to determine where the lower central series becomes stationary. Since we can show the latter is determined once one knows the nilpotency class of $F/F''F^p_i^s$ for each prime power p_i^s dividing n, we will restrict

our attention to the case where $n = p^e$ for some prime p.

Theorem 1 provides, as far as our methods are concerned, the best possible information where the nilpotency class is determined within 1. (For the lower bounds we make use of the representation of R/R' as a Z(F/R) module as given by Magnus [2].) To get this much information in the general situation seems difficult at the moment, but to get an error of p appears to be relatively easy. For example, in the case $p^3=8$ and $p^3=27$, it is easy to establish $\Sigma^{13}\subseteq \Im(8)$ ($\Sigma^{11}\subseteq \Im(8)$) and $\Sigma^{56}\subseteq \Im(27)$ ($\Sigma^{53}\subseteq \Im(27)$) which translates as follows: $F/F''F^3$ has nilpotency class at most 14 and at least 12, while $F/F''F^{27}$ has nilpotency class at most 57 and at least 54. However, the previous work makes one strongly suspect that $\Sigma^{54}\subseteq \Im(27)$ and $\Sigma^{12}\subseteq \Im(8)$. In the case of arbitrary p^2 , we have shown the following:

THEOREM 2. $\Sigma^{2p^2-p-1}\subseteq \Im(p^2)$ for arbitrary prime p.

COROLLARY 2. $F/F''F^{p^2}$ has nilpotency class at most $2p^2-p$ and at least $2p^2-2p$.

For $p^2=4$, 9, Theorem 1 gives sharper information, and in general, we believe the following to be the case.

Conjecture 1. $\Sigma^{e(p^e-p^{e-1})}\subseteq \Im(p^e)$ for any prime p and integer $e\geq 1$.

$$(\Sigma^{e(pe-pe-1)-1} \subseteq \Im(p^e)).$$

A computation which yields results similar to Theorem 2 could be made for arbitrary p^e , but we have not done so yet. We can at this time state the following:

THEOREM 3. For x in G, $(1-x)^{e(p^e-p^{e-1})}$ is in $\Im(p^e)$.

COROLLARY 3. $F/F''F^{p^e}$ has Engel length $e(p^e-p^{e-1})-1$ or $e(p^e-p^{e-1})$.

COROLLARY 4. $F/F^{(k)}F^{p^e}$ has Engel length $\leq (k-1)e(p^e-p^{e-1})$.

Here $F^{(k)}$ denotes the kth term of the derived series of F. The impetus for much of our work and for which Conjecture 1 would be an immediate corollary is

Conjecture 2. Let ω be a primitive p^e root of unity and $Z_{p^e}[\omega] \cong Z_{p^e}[x]/\theta_{p^e}(x)$, where $\theta_{p^e}(x)$ is the irreducible polynomial which ω satisfies. Let k be the kernel of a homomorphism of Z(G) into $Z_{p^e}[\omega]$. Let K be the intersection of all such kernels. Then $K = \Im(p^e)$.

We have been able to prove Conjecture 2 only in simplest situations (e.g., p=2, 3, 5) and even in the simplest cases, where Z_{p^e} contains nilpotent elements (e.g., $p^e=4$), a great deal of complexity is introduced.

Added in proof (September 1966). Conjecture 1 has been proved by Professor H. Heilbronn. Thus it follows that $F/F''F^{p^e}$ has nilpotency class $e(p^e-p^{e-1})$) or $e(p^e-p^{e-1})+1$.

REFERENCES

- 1. H. Meier-Wunderli, Metabelsche Gruppen, Comment. Math. Helv. 25 (1951), 1–10.
- 2. W. Magnus, On a theorem of Marshall Hall, Ann. of Math. (2) 40 (1939), 764-768.

University of California, Santa Barbara