
ON NEW RESULTS IN THE THEORY OF 
MINIMAL SURFACES 

JOHANNES C. C. NITSCHE1 

CHAPTER I. INTRODUCTION 

I t was with some hesitation that I decided to talk about the theory 
of minimal surfaces. Although, over the centuries, minimal surfaces 
and the problems connected with them have attracted the never-end­
ing interest of mathematicians, owing to their classical character and 
the fact that the theory, without doubt, reached its culmination in 
the 1930's,2 marked by the spectacular and pioneering achievements 
of L. Tonelli, R. Gamier, T. Radó, J. Douglas, R. Courant, C. B. 
Morrey, E. M. McShane, M. Shiffman, M. Morse, T. Tompkins and 
others, one might expect to find a closed chapter. This is not the 
state of affairs, however. 

New and important results have been forthcoming ever since—• 
so the results of M. Shiffman [3] on doubly-connected minimal sur­
faces, the studies of L. Bers [ l ] , [2], [3] about Abelian minimal sur­
faces and about boundary-value problems for the minimal surface 
equation and isolated singularities of its solutions, the theorems of 
H. Lewy [5], [6] on the boundary behavior of minimal surfaces, 
the papers of E. J. Mickle [2], E. Hopf [ l ] , [2], E. Heinz [ l ] , K. 
Jörgens [ l ] , R. Osserman [ l ] , [3], [4] on Bernstein's theorem and 
its generalizations, of Y. W. Chen [ l ] , [2], [3] on new versions of 
Plateau's problem and on branch points, the ideas of R. Finn [ l ] , 
[2]» [3], [6], [7] concerning the minimal surface equation and its 
generalizations, the publications of J. Serrin [2], H. Jenkins [ l ] , [2], 
and H. Jenkins and J. Serrin [l ] on a priori estimates for the minimal 
surface equation and more general variational problems, the work 
of R. Osserman [5]-[8] on complete minimal surfaces, studies of the 
relations between minimal surfaces in isothermic representation and 
function theory by M. Tsuji [ l ] , M. O. Reade [ l ] , E. F. Beckenbach 
and G. A. Hutchison [ l ] , and many others, the manifold investiga-
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tions of R. Courant (partly laid down in his book [3]) and his school, 
for instance, the solution of Schwarz's free boundary-value problem 
by I. F. Ritter [ l ] , the proof of the bridge theorem by M. Kruskal 
[ l ] , the study of unstable minimal surfaces by I. Marx [ l ] , and a 
result of A. Solomon [ l ] on a special free boundary-value problem, 
the examples of P. Levy [ l ] , [2] of nonuniqueness in the Plateau 
problem, the extensive work of A. G. Sigalov (see, for instance, [ l]) , 
the remark of S. Sasaki [l ] concerning branch points, new discussions 
of the isoperimetric inequality by A. Huber [ l ] , [2], W. T. Reid [ l ] , 
C. C. Hsiung [l ], and, in a considerably more general setting, by S. Z. 
Sefel' [ l ] , detailed investigations of special minimal surfaces by H. 
Graf and H. Thomas [ l ] , W. Wunderlich [ l ] , [2], H. Jonas [ l ] , 
M. Fréchet [ l ] , R. Gamier [ l ] , [2] and others—to recite only a few; 
not to mention the scores of papers on minimal surfaces in higher-
dimensional spaces and in Riemannian spaces, in affine, or projec­
tive, or complex geometry by D. V. Beklemisev, J. W. Lawson, A. T. 
Lonseth, K. Leichtweiss, Ü. Lumiste, C. B. Morrey, M. Pinl, K. 
Strubecker, and many others. 

So it might be worthwhile, after all, to describe a few (and a selec­
tion of few it must remain) of the recent activities, as well as some 
of the difficulties, in the field of minimal surfaces. Some of these 
activities are concerned with a global or quantitative treatment of 
problems which had been dealt with before locally or in a qualitative 
manner, or with the study of old examples in the light of new ques­
tions, and thus at times appear (but only appear) to be a bit out-of-
date, at other times—as it seems almost unavoidable in a field so 
branched out as ours—lack complete novelty. Several of the results 
have not or not yet appeared elsewhere. It might be of interest also 
to have a small collection of problems, all classical in character, which 
have either defied so far attempts at solution or not yet been treated. 
Such a listing is given in Chapter VII. 

Of course, the questions raised by the investigations over the years 
and the methods invented to deal with them in an adequate manner 
necessarily have led to considerable generalizations of the original 
concepts. This is particularly evident in the recent work of E. R. 
Reifenberg, as well as that of L. C. Young, E. de Giorgi, W. H. 
Fleming, H. Fédérer and others, which to a certain degree was moti­
vated by the desire to obtain decent (at least locally decent) surfaces 
as solutions of Plateau's problem; surfaces which are not marred by 
the presence of branch points whose occurrence in the classical solu­
tions—with a few notable exceptions even in seemingly reasonable 
cases—has never been proved to be avoidable. (To be sure, it has 
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never been proved to be unavoidable either.) However, aside from the 
fact that these investigations pertain mainly to one aspect of the 
theory, namely, to the determination and study of varieties of small­
est area with prescribed boundary, the methods involved are beyond 
the scope of this report. I shall restrict myself to the discussion of real* 
two-dimensional parametric surfaces in ordinary 3-space, to a large 
part to such surfaces in a nonparametric (single-valued) representa­
tion z = z(x, y), partly merely relating results, partly—if feasible in 
limited space, or if the known proofs are longer or more restrictive— 
sketching proofs. Generalizations to two-dimensional surfaces and 
to (» — l)-dimensional hypersurfaces in Euclidean w-space are often 
possible and have been carried out by E. F. Beckenbach, S. S. Chern, 
J. Moser, R. Osserman and others. Occasionally they pose formidable 
problems, as, for instance, in the case of Bernstein's theorem. Only 
a few months ago the latter was proved for the case n = 4 by E. 
de Giorgi, employing concepts developed by R. Caccioppoli, W. H. 
Fleming, H. Fédérer, and himself, and a new regularity theorem due 
to D. Triscari. 

The bibliography contains only papers relevant to the present re­
port. For further references consult, for instance, R. Courant [3], 
J. Douglas [4], [6], R. V. Lilienthal [ l ] , C. B. Morrey [3], T. Rado 
[ó], M. Shiffman [2]. For the computations of the numerical esti­
mates in the paragraphs 11.9 and 11.12, I am grateful to M. Stein 
and M. Engeli. The few historical footnotes are my own translation. 

CHAPTER II. T H E MINIMAL SURFACE EQUATION 

1. The minimal surface equation as a representative of nonlinear 
elliptic equations. 

1.1. For a minimal surface, given in nonparametric representation 
z = z(x, y), the function z(x, y) is a solution of the minimal surface 
equation 

(1) L[z] m (1 + q2)r - 2pqs + (1 + *«)/ = 0. 

I t is a well-known fact, documented by striking examples, that the 
solutions of this equation behave quite differently from the solutions 
of linear elliptic differential equations. The reason lies in the severe 
nonlinearity of the minimal surface equation. This nonlinearity is so 

* S. Lie [l, p. 332] makes the remark: "Following Riemann and Weierstrass one 
nowadays frequently investigates a real minimal surface by relating its real points to 
the real points of an (x+iy)-plane in the well-known manner. However beautiful, 
simple, and fruitful this approach may be, to me it seems a deficiency of it to take 
into consideration only the real points of real minimal surfaces.w 



198 J. C. C. NITSCHE [March 

bad that it defies most of the general theories for elliptic equations 
which have been put forth in recent years. In fact, while it is the 
general aim of these investigations to prove the existence theorems, 
uniqueness theorems, regularity theorems, etc., characteristic for 
linear and mildly nonlinear equations, the minimal surface equation 
is a prototype of quite another class of differential equations for 
which new and different problems can, and have to, be considered. 

1.2. Directing one's attention to the study of special properties 
of the solutions of certain classes of quasi-linear elliptic differential 
equations one can actually define measures of nonlinearity, condi­
tions which, when fulfilled, guarantee the properties in question. This 
has been done by a number of authors in various ways and in regard 
to different properties of interest—solvability of Dirichlet's problem, 
possibility of isolated singularities, existence of nonlinear entire solu­
tions, validity of certain a priori estimates, etc.; see, for instance, 
S. Bernstein [2], L. Bers [4], [S], R. Finn [2]-[7], H. Jenkins [ l ] , 
[2], [3], H. Jenkins and J. Serrin [ l ] , J. Leray [ l ] , J. C. C. Nitsche 
[19], J. and J. Nitsche [ l ] , [2], J. Serrin [ l ] , [3]. Of course, in most 
cases these measures only lead to sufficient conditions. 

The first such discussion was carried out by S. Bernstein in 1912 
(see [2, especially pp. 455-469]) for quasi-linear elliptic differential 
equations 

(2) L[z] = a(x9 y\ p, q)r + 2b(x, y\ p, q)s + c(x, y\ p, q)t = 0, 

where ac — &2>0, a > 0 , and, in greater generality, by J. Leray (see 
[l, especially pp. 281-283]). Let us say that a function F(£, rj) has a 
definite growth for £ and rj tending to infinity, and that this growth 
is of order a (in signs, Ffê, ??)'^/(£2+??2)a/2), if there are two constants 
w, p0 (1 ^ m < oo, po>0) and an exponent a, such that the inequalities 

1 
— (P + v2)a/2 ^ F(£, v) ^ ™(£2 + v2)"'2 

m 

hold for £2+rç2^Po. Under certain regularity conditions, and assum­
ing that the two forms 

Fx = Fx(x, y; p, q) = ap* + 2bpq + cq\ 

F2 = Fi(x, y; p} q) = (a + c)(p* + q>) 

have, uniformly for all (x, y) in the domain under consideration, a 
definite growth as p and q tend to infinity, of orders Hi and /x2, respec­
tively, S. Bernstein calls the difference JU = /J2—MI the mode ("genre") 
of the differential equation (2). From the relation F2 — Fi = aq2 — 2bpq 
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+cp2 it follows that F2>Fi for p2+q2^0 and that /x2^Mi, i-e., M^O. 
For the minimal surface equation we obtain Fi = p2 + q2, 
F2=(p2+Q.2)(2+p2+q2), so that its mode is two. Linear and uni­
formly elliptic differential equations are of mode zero. 

The investigations of S. Bernstein concerning the solvability of 
Dirichlet's problem reveal that differential equations, whose mode 
does not exceed the value one, behave similarly to linear differential 
equations, while differential equations of mode exceeding one have 
different features. A particularly interesting class is that of the equa­
tions of mode two, the minimal surface equation being a representa­
tive of this class. 

1.3. In 1954 and the following years R. Finn [3] - [7] introduced 
and investigated a class of quasi-linear differential equations which 
he, on account of their close relationship to the minimal surface equa­
tion, called equations of minimal surface type: An equation (2), un­
der the normalization ac — b2=l and varying further conditions, is 
called of minimal surface type, if there is a constant M (1 £M < °o) 
such that the inequality 

(4) F* = Fz(x, y; p, q) = a(l + p2) + 2bpq + c(l + q2) ^ 2MW 

holds for all (x, y) in the domain under consideration and for all (p, q). 
Here, W= (l+p2+q2)1/2. Note that F2=(p2+q2)(Fz-F1). 

Condition (4) has an interesting geometrical interpretation. I t 
never seems to have been observed, however, and will be proved in 
J. C. C. Nitsche [19] that every equation of minimal surface type is 
an equation of mode two. The converse is not true, i.e., differential 
equations of mode two constitute a larger class than differential 
equations of minimal surface type. This may be illustrated by the 
differential equation (2) with coefficients 

where d= [l+œ2W2(«-»(l+P2W-2)]1'2,œ2==p2+q2, so that ac-b2 = l, 
and a > l . Here we find Fi~o)a, ^^w"4"2 , Fz~œ". 

1.4. A minimal surface z = s(x, 3/) is solution, in a nonparametric 
representation, of the variational problem 
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Ô I I [X2 + F2 + Z2]1'2 dudv = 0. 

Here X(u, v), Y(u, v), and Z(u, v) denote the components of the vec­
tor product XuXlCv, where i(u, v) is the vector of the surface in para­
metric representation. Let us consider a regular variational problem 
where the integrand is a positive and positive homogeneous ^-func­
tion F(X, F, Z) of X, F, and Z. An extremal in the form z = z(x, y) 
of such a problem is extremal of a nonparametric problem 

(5) 5 ƒ ƒ F(p, q) dxdy = 0 (F(p, q) > 0), 

whose Euler equation is of form (2). This connection has been in­
vestigated by A. Haar [3], T. Radó, and E. J. Mickle [ l ] , and re­
cently again by H. Jenkins [ l ] , [2]. There are variational problems 
associated with (5) whose extremals are in the same relation to the 
extremals of (5) as adjoint minimal surfaces to each other. H. Jenkins 
proved the interesting fact that the Euler equation, derived from 
a problem whose indicatrix (i.e., the closed surface in (X, F, Z)-
space, defined by F(X, F, Z) = 1) has everywhere positive Gaussian 
curvature, is of minimal surface type (more precisely, of class €3; see 
R. Finn [3, p. 401]). Such equations, the solutions of which again ex­
hibit the features of our paradigmatic minimal surface equation, have 
consequently been investigated by H. Jenkins [2] and H. Jenkins 
and J. Serrin [ l ] . 

1.5. In 1902 S. A. Chaplygin [ l ] observed that the minimal sur­
face equation may be interpreted as the potential equation of a 
steady gas flow whose velocity co= (Z^+Z^)1/2 and density p are 
connected by the relationship p2(l+co2) = l. Although this equation 
implies the physically impossible pressure-density relation p = a+b/p, 
it turns out that "Chaplygin flows" are good approximations to suffi­
ciently slow flows of an actual gas. L. Bers [ l ] and Y. W. Chen [2], 
[3] have formulated and investigated a number of exterior boundary-
value problems for the minimal surface equation, representing a 
steady Chaplygin flow past a given profile, which were suggested by 
this gas-dynamical interpretation, applying fixed-point theorems to 
resulting integral equations, or solving new parametric problems, 
respectively. 

1.6. All these investigations, many of which easily carry over to 
the w-dimensional case, center around the minimal surface equation 
as the most prominent representative of a new class of equations 
with special features, and the discussion in the following paragraphs 
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may well be considered as a model and a program for the investiga­
tion of a broad category of quasi-linear elliptic differential equations 
in two as well as in n dimensions. 

2. Nonsolvability of Dirichlet's problem. 
2.1. Given a Jordan domain P in the (x, ^)-plane and a continuous 

function ƒ(x, y), defined on its boundary dP, characterizing a simple 
closed curve T in (x, y, z) -space. The nonparametric Plateau prob­
lem, i.e., the Dirichlet problem for the minimal surface equation, 
calls for a solution z(x, y) G C2(P)r^C°(P) of this equation in P , whose 
values on dP coincide with those of the function ƒ. 

In 1832 S. D. Poisson [ l ] announced that he had obtained an 
existence proof for the case where the curve T differs only slightly 
from a plane curve. He never published this proof, however. In 1909 
such a proof was put forward in a classical paper by A. Korn [ l ] . 
Korn assumes the boundary dP as well as the function ƒ to belong to 
class C2,x and requires the (2, A)-norm of ƒ to be sufficiently small. In 
later years the problem was dealt with in increasing generality (and 
increasing rigor4) in the work of S. Bernstein [ l ] , [2], C. H. Müntz 
[ l ] , A. Haar [2], and especially T. Radó [4], and it is now a well-
established fact that a solution exists for arbitrary continuous bound­
ary data, provided the domain P is convex (not necessarily strictly 
convex). 

The simplest proof (much simpler than the one using methods of 
partial differential equations) applies a lemma of T, Radó to the 
parametric solution of Plateau's problem (see T. Radó [4, pp. 795— 
796], [5, p. 16], [6, p. 35]). If one takes for granted the solvability 
of Dirichlet's problem for small circles with continuous boundary 
data and employs the a priori estimates and compactness theorems 
of paragraphs 11.12 and 11.13, a modification of the method devised 
by O. Perron (see [ l ] ; also R. Courant and D. Hilbert [l, pp. 306-
312]) can also be used. Barriers are easily constructed in all boundary 
points in which the boundary is "locally convex." (The boundary 
dP is called locally convex in one of its points p, if there is an open 
circle K with center p, such that the component of PC\K which con­
tains p as boundary point is convex.) 

2.2. For general domains the situation is more complex. This was 
first pointed out by S. Bernstein (see [2, especially pp. 455-469]) and 
discussed in greater generality by J. Leray [ l ] . Bernstein outlined a 
proof that for equations of mode two there are nonconvex domains 

4 Some controversial arguments concerning this question can be found in S. 
Bernstein [3], T. Radó [3], C. H. Müntz [2]. 
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FIGURE 1 

for which Dirichlet's problem, in general, is not solvable. The do­
mains P he considered are bounded in part by a concave analytic 
arc BCD, as in Figure 1, and his proof is based on the construction 
of an auxiliary function z = <j>{x, y), a solution of class C2(P)r\C°(P), 
whose gradient tends to infinity upon approach of any point of the 
arc BCD. 

If now z(x, y) is a solution of the minimal surface equation in P , 
whose values along the arc BAD (see Figure 1) do not exceed those 
of the auxiliary function <j>, an extension of the maximum principle 
shows that the inequality z^<f> must hold in all of P. Thus Dirichlet's 
problem cannot be solvable if the prescribed boundary data, while 
remaining smaller than <f> along the arc BAD, a t some point of the 
arc BCD exceed the value of the function <j>. 

2.3. The auxiliary function <f>(x, y) is obtained as solution of a 
Cauchy problem in sufficiently small domains. I t should be pointed 
out that in the case of the minimal surface equation this Cauchy 
problem is nothing but Björling's problem: Choose a concave curve 
6 in the (x, y) -plane (concave as viewed from a point with large 
abscissa). Determine the minimal surface S, given in parametric 
representation l = l{u, v), which contains 6 and whose normal vector, 
in the points of 6, lies in the (x, y) -plane. On S the curve 6 must be 
a curvature line, in fact, a geodesic. The curves of intersection of S 
with the planes y = const are vertical, i.e., parallel to the «-direction, 
in the points of C and convex in a neighborhood of Q (convex as 
viewed from a point with large abscissa). I t will be possible, there­
fore, at least locally, to project the part of S below the (x, ;y)-plane 
in a single-valued manner upon the (x> y)-plane, giving rise to a non-
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parametric representation z = z(x, y) of S. The function z(x, y) has all 
the properties of the auxiliary function <j>(xy y) of Bernstein. 

The determination of a minimal surface, containing a given plane 
curve <B as geodesic, is a standard exercise and has been carried out 
explicitly for many special cases in the work of L. Henneberg [l ], [2], 
A. Herzog [ l ] , H. W. Richmond (see [l, especially pp. 238-239]), 
H. A. Schwarz (see [3, especially p. 199], [2, especially p. 182]), 
H. Tallquist [ l ] and others. If 6 is a circle, we obtain a catenoid; 
if 6 is a cycloid, we obtain E. Catalan's surface (see [l, pp. 161-164]) ; 
but also ellipses, parabolas, Neil's parabolas, asteroids, and other 
curves have been discussed. 

Let us give here three explicit examples of minimal surfaces 
z = z(x, y) having the properties of the auxiliary function <j> over special 
domains. Each leads, using Bernstein's idea, to quantitative state­
ments. The first has recently been used in an interesting way by 
R. Finn [7] for such purposes. 

(i) z = </>i(x,y)a,b)=alog [(b + iW-a^v^/ir + i^-a2)1'2)], where 
0<a<b and r = (x2+y2)112 (catenoid). 

(ii) The minimal surface 2=02(#, y, a), defined parametrically by 
the equations 

x = a\ u + uv2 uz , 

y = a — v — u2v H vz , 

z = a[u2 — z;2] 

(Enneper's surface, see [ l]) . 

21/2 r l 1 1 
(iii) z = <t>z(x, y; a) — sin -1 — cosh(ax) cosh(a^) I, 

a L 2 2 J 
obtained by a simple transformation from the minimal surface 
sin 2 = sinh x sinh y, which was already known to H. F. Scherk [ l ] . 

All these functions vanish on the heavily drawn part BAD of the 
boundary, while their gradient tends to infinity upon approach of 
any point of the thinly drawn part BCD of the boundary; see Figures 
2a, 2b, 2c, which show the domains for the functions $». 

Added in proof. As a matter of fact, a simple argument in combina­
tion with the result of R. Finn [7, Theorem 4] yields the following 
interesting conclusion: For every nonconvex Jordan curve there exist 
continuous boundary data for which Dirichlet's problem is not solvable. 
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FIGURE 2a 

Domain for the function 4>z(x, y; a) 

FIGURE 2 b 

Domain for the function faix, y; a) 

2.4. A particularly clear-cut example for the nonsolvability of 
Dirichlet's problem, often cited in the literature, was given by T. 
Radó (see [5, pp. 18-20], [6, p. 37]) as an application of his unique­
ness theorem [5, p. 10], [6, pp. 35-37] to the classical minimal surface 
through four sides of a regular tetrahedron, determined by H. A. 
Schwarz [ l ] and B. Riemann [l , pp. 326-329]. Here the domain P 
is the nonconvex quadrilateral ABC'D (see Figure 3), and the bound­
ary values ƒ are zero on the sides AB and AD and increase linearly 
from zero to the value h0 = (2/3)1 /2 along the sides BC' and DC. Let 
us consider, more generally, for the quadrilateral A BCD, the Dirich-
let problem ^ , where the boundary values are again zero on the sides 
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FIGURE 2C 

Domain for the function (f>i(x, y; a, b) 

B 
FIGURE 3 

; ! - (0 ,0 ,0 ) B = (m112, ~ i , 0 ) 
^ - ( « 3 ) ^ , 0 , 0 ) tf-tttf)1/», J,0) 
C-(K3W 0, (f)^) C-(J(3)i/\0 f« 

AB and ^4P and increase linearly from zero to the value h^0 along 
the sides BC' and DC', i.e., we are asking for a minimal surface 
z = z(x, y) through the polygon Y with corners A, B,V, and D (see 
Figure 3). Since the minimal surface of Schwarz and Riemann is 
uniquely determined and passes through the center of the tetrahedron 
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ABCD, i.e., has no single-valued projection onto the (x, y)-plane, it is 
clear that problem $* has no solution for h = ho = 0.8165 • • • . If one 
applies the idea of S. Bernstein, comparing the solution z(x, y) with 
any one of the auxiliary functions </> mentioned earlier (under proper 
choice of the parameters a, b) in the shaded regions indicated in Fig­
ures 2a, 2b, 2c one finds that problem S$h is not solvable, respectively, 
for 

* > *i = -— log(2 + 3*/2) = 0.760 • • • (using 00 , 
3 '2 

1 
h> h2 = — (3)1'2 = 0.866 • • • (using <£2), 

h>h= «-[(24)1/* log(l + 21/2)]-1 

= 0.727 • • • (using fa). 

The first inequality was recently obtained by R. Finn [7]. 
In view of the result of A. Korn—disregarding his smoothness as­

sumptions—one might be inclined to think that problem y$h will be 
solvable at least for sufficiently small values of h (problem ^o has 
the trivial solution z(x, y) =0) ; and, surprisingly, it has been an open 
question until now whether this is the case or not. I say "surpris­
ingly, * since the impossibility of a solution is intuitively clear: The 
unique minimal surface in question, bounded by the polygon Y and 
given in parametric representation, would have in the points A and 
C normal vectors as indicated in Figure 3. Obviously it would not lend 
itself to a nonparametric representation z~z{x, y). In a forthcoming 
paper (see J. C. C. Nitsche [18]) it is proved that 

problem ^ has no solution for h>0. 
The proof extends without difficulties to similar problems on any 

nonconvex quadrilateral. 
2.5. If one attacks problem ^ by the method of O. Perron (see 

II.2.1), one obtains a solution of the minimal surface equation in the 
interior of the quadrilateral ABCD. This solution assumes the bound­
ary values in all boundary points in which the boundary is locally 
convex, i.e., in all boundary points with the exception of the vertex 
C' of the re-entrant angle. Exactly how the Perron-solution behaves 
in a neighborhood of the point C apparently has never been investi­
gated. The same remark applies to the general question how the 
Perron-solution behaves in a vicinity of a boundary point in which 
the boundary is not locally convex. 

3. Dirichlet's problem with incomplete boundary data. Another of 
the surprising differences between the properties of harmonic func-
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tions and solutions of the minimal surface equation is contained in 
the famous theorem of L. Bers [2] to the effect that an isolated 
singularity of a (single-valued) solution of the minimal surface equa­
tion, interior to the domain of definition, ipso facto, must be remova­
ble. In particular, a solution of the minimal surface equation remains 
bounded in the neighborhood of such a singularity—a fact which 
may be interpreted as an extended maximum principle: 

Let z(x, y) be a solution of the minimal surface equation in the punc­
tured disc PQ= {X, y\ Q<x2+y2<r2}. Let m = lim inf z(x, y) and 
M = lim sup z(x, y) for any approach to the circle x2+y2 = r2. Then the 
inequalities m^z(x, y)^M hold in all of P0. 

Other proofs of the extended maximum principle and of the theo­
rem of L. Bers, often valid for classes of quasi-linear elliptic equations, 
have been given by L. Bers [5], R. Finn [2], [7], H. Jenkins [3], 
J. C. C. Nitsche [6], [19], Johannes and Joachim Nitsche [2]. The ex­
tended maximum principle (also in the more general form given in 
the last reference) holds for all elliptic differential equations (2) whose 
mode is greater than one or, more generally, for which the improper 
integral 

ƒ " do 

coQ(co) 

converges. Here 

Q(a>) = Min < Inf I — 1 
*i+i«-»i ( (*,„) \Fi(x} y;p,q) 

(J. C. C. Nitsche [» ] . ) 
While it is easy to construct solutions of (1) for which an isolated 

singularity on the boundary of the domain of definition is not remova­
ble, the extended maximum principle still holds. This was first 
proved by Johannes and Joachim Nitsche [2] and, in greater gener­
ality, recently by R. Finn [6, p. 342]. Based on this maximum prin­
ciple the author had discussed in [4], some years ago, Dirichlet's 
problem for a bounded convex (not necessarily strictly convex) 
domain with boundary data which are continuous and bounded, but 
which are not defined in finitely many boundary points. For harmonic 
functions this problem makes no sense without the imposition of 
additional growth conditions. Thus the problem deals not with the 
question of the regularity or irregularity of a boundary point but 
rather with the question of the existence and uniqueness of the solu­
tion under incomplete boundary data. 

It is now possible to generalize and solve Dirichlefs problem to the ex­
tent that the prescribed boundary values are continuous and bounded 

)}• 
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except on a compact set on dP of vanishing linear Lébesgue measure 
{taken with respect to the arc length on dP). 

Details are given in J. C. C. Nitsche [16]. 

4. Sets of vanishing linear Hausdorff measure. A point set A on 
a convex curve of vanishing linear Lebesgue measure, considered as 
point set in the plane, has also vanishing linear Hausdorff measure. 
I t is for this as well as for other reasons that exceptional sets of vanish­
ing linear Hausdorff measure play a role in various investigations of 
interest for us. Among other things important for these investigations 
is the fact that a compact set A of vanishing linear Hausdorff measure, 
contained in the closure P of a domain P, does not separate this domain. 
Considering that the point sets of vanishing linear Hausdorff meas­
ure generally are somewhat bigger than the point sets of vanishing 
logarithmic capacity (see O. Frostman [l, p. 86]; L. Carleson [l, p. 
32]), this statement contains a basic theorem of function theory. In 
the next lines a simple quantitative proof is given for this property 
in the following version : 

Let A be a compact set of vanishing linear Hausdorff measure, con­
tained in the closure P of the circular annulus P= {x, y\ 0<rl<x2<y2 

<r\ < oo }. It is possible to find a Jordan curve in P of length arbitrarily 
close to 27iTi, containing the origin x = y = Q in its interior, and avoiding 
the set A. 

For the proof choose a number e (0<€<Min(2r i , (r^ — r-^/ir)). The 
set A can be covered by finitely many open circles, the sum of whose 
diameters is less than e. The union of these circles consists of a finite 
number of open components Oi, 02, • • • , 0m (depending on e). Each 
component 0» is bounded by circular arcs. The length of its boundary 
cannot exceed the total circumference of the circles participating in 
its formation and thus is certainly not larger than xe < Min (2irri, r2 — n.). 
From this fact it follows that the closure of no component Oi can 
have points in common simultaneously with the inner and the outer 
boundaries of 7 and that there are points on the circle x2+y2 = r2 

( r i < r < r 2 ) not covered by the 0». Starting from such a point we now 
follow the circle x2+y2 = r2. If we meet a component 0it say 0±, we 
follow its boundary in such a way that we, without leaving the 
annulus P, come back to the circle x2+y2 = r2 on "the other side" of 
Oi. In this fashion we continue. We might encounter the component 
Oi repeatedly. The new detours, however, each time follow new parts 
of its boundary. The total detour on this journey once around the 
circle x2+y2 = r2 cannot amount to more than ire. The assertion fol­
lows if we choose r sufficiently close to rlt (A simpler proof, com-
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municated to the author by W. Littman, can be found in J. C. C. 
Nitsche [16].) 

5. The general maximum principle. 
5.1. The uniqueness proof for the general Dirichlet problem of 11.3 

is based on a general maximum principle. It contains as special cases 
the extended maximum principle of II.3 and maximum principles 
proved by Johannes and Joachim Nitsche [2], R. Finn [6], and J. 
Serrin (in an unpublished remark). 

Let P be a bounded domain in the (x, y)-plane and AÇJP a com­
pact set of vanishing linear Hausdorff measure. Let z\(x, y) and 
ZÎ(X, y) be two solutions of class C2 of the minimal surface equation, 
defined in P—A. Assume that lim sup [z2(x, y)—Zx(x, y)]^M 
(lim inf [z^x, y) — Zi(x, y)]*tm) for approach of any boundary point of 
P not in A. Then the inequality z%(x, y) —Zi{x, y)SM {zi(x, y) —Zi(x, y) 
è m) holds in all points of P~A. 

For the proof the reader is referred to J. C. C. Nitsche [16]. It 
should be pointed out that the exceptional set A may well lie entirely 
on the boundary of P. 

5.2. It is not clear whether the linear Hausdorff measure leads to 
optimal results. The question to find necessary and sufficient metric 
conditions on the exceptional set A for the general maximum prin­
ciple to hold, is still open. 

From the results of 11.7 it is easy to construct examples where the 
exceptional set is a straight line segment on the boundary or in the 
interior of the domain of definition (and thus has positive linear 
Hausdorff measure), for which the general maximum principle does 
not hold. In fact the simplest, although rather crude, example is given 
by Scherk's surface (6); see II.7.1. 

R. Finn [7, pp. 7-8] has also given an example of a solution z(x, y) 
of the minimal surface equation, defined in the neighborhood of a 
straight line segment, which tends to + oo for approach of any inte­
rior point of this segment. Comparing z(x, y) with the function 
<f>i(x, y\ a, V) of II.2.3 he shows that z(x, y) cannot tend to 4* oo for 
approach of all points of the segment. This is also a consequence of 
the results of IV. 2 and V.4. As a matter of fact, the following quan­
titative statement, given here without proof, holds: 

Let Pbea domain, contained in a circle of radius r, and B a compact 
set in the interior of P. Let z(x, y) be a solution of the minimal surface 
equation inP — B. If lim sup z(x, y) Smfor approach of every boundary 
point of P and lim inf z(x, y) è M f or approach of every point of B, then 
the inequality M—m^2r/3 must hold. 



210 J. C. C. NITSCHE [March 

5.3. The general maximum principle plays a basic role for the 
considerations of the paragraphs II.6 to 11.12. It also has many other 
special applications. For instance, in combination with a barrier argu­
ment the following statement can be proved: 

Let z(x, y) be a solution of the minimal surface equation in a Jordan 
domain P. Let pbea boundary point in which the boundary dP is locally 
convex {see II.2.1). Let K be an open circle containing p, and assume 
that lim sup z{x, y)^M (lim inf z{x, y) è w) for approach of any point 
of KC\dP—p. Then lim sup z{x, y)^M (lim inf z{x, y) âra) also f or 
approach of p. 

6. Removable singularities. The theorem of L. Bers about the re­
movability of an isolated point singularity has already been men­
tioned in II.3. In the investigation of the removability of singularities 
of harmonic functions one does not restrict oneself to the considera­
tion of isolated exceptional points. There are many results on the 
removability of singularities for certain classes of harmonic functions 
—bounded functions, Lipschitz-continuous functions, functions with 
bounded Dirichlet integral or bounded integral norm—on sufficiently 
meager sets wholly interior to the domain of definition. (See the sur­
veys of M. Tsuji [2] and L. Carleson [l] which contain extensive 
bibliographies.) Recently J. Serrin [3] has investigated such ques­
tions for a class of nonlinear differential equations containing the 
Laplace equation as special case. Although the minimal surface equa­
tion eludes his assumptions and, in fact, exhibits quite different fea­
tures, his method, in combination with an argument of R. Finn [2], 
extends to a certain degree to the minimal surface equation provided, 
however, among other things, that the exceptional set is contained in 
the interior of the domain of definition. On the basis of the solvability 
of the general Dirichlet problem, of the general maximum principle, 
and of the properties of sets of vanishing linear Hausdorff measure 
the following theorem on removable singularities holds (see J. C. C. 
Nitsche [16]): _ 

Let P be a bounded domain in the {x, y)-plane and A C.P a compact 
set of vanishing linear Hausdorff measure. {Note that the exceptional 
set A is permitted to extend to the boundary of P.) Let z{x} y)(EC2{P—A) 
be a solution of the minimal surface equation in P—A. The set A is re­
movable for the solution z{x, y), i.e., the function z{x, y) can be assigned 
such values in the points of the set A that the extended function is a C2-
solution of the minimal surface equation in all of P. The extension is 
unique. 

For the proof let {x0, yo) be a point of A C\Pt and let K\ and K2 be 
two open circles about this point (KiC.Kt$ K2C.P). By II.4, we can 
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find, in the annulus ^2 —K\% a Jordan curve containing the point 
(tfo, 3>o) in its interior and avoiding the set A. Along this curve the 
solution is defined and hence bounded. By the general maximum 
principle the solution is bounded in all of Ki — A. We now solve the 
general Dirichlet problem 11.3 for the circle K\ with the values of 
z(x, y) prescribed on K\ — A. Its solution Z(x, y) has continuous sec­
ond derivatives in K±. Applying again the general maximum principle, 
it is seen that Z(x, y) must coincide with z(x, y) in Ki — A. In this 
way an extension of the function z(x, y) as solution of the minimal 
surface equation to all of P is obtained. I t is easy to show that this 
extension must be unique. 

7. Dirichlet's problem with partly infinite boundary data. 
7.1. According to II.3 we can solve Dirichlet's problem for the 

special case in which the boundary values are piecewise smooth and 
partly equal to zero, partly equal to a nonzero constant. The solution 
is identical with the solution of the parametric Plateau problem whose 
boundary contour possesses vertical segments. A century ago many 
special minimal surfaces were considered whose boundaries contain 
infinite half-lines. An example is provided by the surface of H. F . 
Scherk [ l ] : 

z 
(6) 

= —<log cos —( ) 
2 1 L a\ cos a sm a/ J 

- log cos \ - (-?— + - ^ - Y | | , 
L a \cosuj s i n a / J ; 

X 

cos a 
y__ 

sin a 
- Ima-K 

aw 
<—> 

2 

x 

cos a sin a 
- Inair 

where 0 < a < 7 r / 2 and a is a positive parameter. This surface has 
been extensively studied in the literature. I t is real only over the 
"black rhombi" 

air 
< — 

2 

(m, « = 0, ± 1 , ± 2 , • • • ) of an infinite skew checkerboard. For 
a = 7r/4, a = 26, and after a rotation of the coordinate system by 45°, 
the well-known special surface 

(6') z = J {log cosiy/b) — log cos{x/b)} 

is obtained. Let us consider the surface (6) only over the right tri­
angle with vertices 0 = (0, 0), pi = ((ira/2) cos a, 0), and p2 = 
(0, (wa/2) sin a ) . We see that z(x, y) = 0 in all points of the sides of 
this triangle with the exception of pi and p2, while z(x, y) tends to 
+ 00 upon approach of every interior point of the hypotenuse. 

file:///cosuj
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Another example is given by the minimal surface 

1 . r . i 
(7) z = — sinh""1 [sinh(a#)/sinh(a;y)j, a > 0 

a 

(see example (iii) in II.2.3). This surface is defined over any rectan­
gle P = {x, y; 0<x<7r/a, 0<y<b}t where &>& Approaching the 
top and vertical sides of R, with the exception of the points (0, 0) 
and (x/a, 0), s(x, y) tends to finite limits, while it tends to + oo ap­
proaching the segment 0<x<w/a of the x-axis. Actually, z(x, y) is 
defined over the half-plane y>0 (as well as over the half-plane y<0) 
and tends to + oo for approach of the segments 2mr/a <x< (2n + l)ir/a 
of the x-axis and to — oo for approach of the segments {In — 1)TT/O. 

<x<2nir/a of the x-axis. 
7.2. Recently H. Jenkins and J. Serrin (in still unfinished work, see 

also [l]) and R. Finn [ó] have directed their attention to generaliza­
tions of this situation. Let P be a bounded convex (not necessarily 
strictly convex) domain in the (x, 3>)-plane. Let dPi and dP2 be open, 
complementary subarcs of its boundary dP with joint endpoints qi 
and q2. On dPi a continuous bounded function <j> is given : | <j> \ ^ M. 

The problem calls f or a solution z(x, y)GC2(P)P\C°(PUoPi) of the 
minimal surface equation, whose values on dP\ coincide with those of the 
function <t> and which tends to + °° upon approach of any point on dP2. 

Considering that R. Finn treats under special circumstances only 
certain aspects of the problem important for his purposes (for in­
stance he does not discuss the question of uniqueness), and that the 
work of H. Jenkins and J. Serrin is still incomplete, the following 
treatment gives in various points my own version of the proofs. 

By a simple argument (see 11.11) it is seen that our problem can 
be solvable only if the arc dP2 is a straight segment. The solution is 
obtained as the limit for n—> oo of solutions of the general Dirichlet 
problem 11.3 with boundary values <j> on dPi and n on dP2 

(» = 1, 2 , y ) . 
The uniqueness involves more delicate considerations. The simplest 

proof seems to proceed as follows. For concreteness let us assume that 
the domain P lies in the half-plane y>0 and that dP2 is the segment 
— a<x<a of the x-axis (see Figure 4). First one proves two facts: 

(i) Let Zi(x, y) and z2(x, y) be two solutions of our problem. There 
is a number N, depending only on the domain P and on the bound M 
for the function <j> on ôPi, such that \z2(x, y)—zi(x, y)\ ^N every­
where in P\JdPi. 

(ii) Let (x, y) be a point of P whose distance d = d(x, y) from dP\ 
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FIGURE 4 

is larger than Sy, For every solution z(x, y) of our problem the in­
equalities 

-s(*,y) ^ 

-q(x, y) 

<*(*, y) 

6y 

, y ) \ n ( U y y / 2 p(x, y) 

Ci*: 

è 1 -
25y 

W(x, y) d(x, y) 

hold. Thus we have, uniformly for approach to any interval \x\ 
^a — e of dP2 the relations — q(x, y)—>oo, p(x, y)/q(xt y)—>0, and 
- S ( * . y)/W(x, y)->l . 

The uniqueness proof now follows from (i) and (ii) applying the 
following lemma to a domain bounded by the dotted curve in P , 
arbitrarily close to dP, as indicated in Figure 4. 

Let Rbe a bounded domain whose boundary consists of finitely many 
piecewise smooth Jordan curves. Let Zi(x, y), z2(x, y)Ç.C2(R)r\C°(R) 
be two solutions of the minimal surface equation in R and set Wj 
= [ l+£?+2?]1 / 2- P°r a compact subdomain Q of R denote by m(Q) the 
maximum of W\ and W2 in Q, Then 

— f f [(*» - PiY + (ffi - <Zi)2] dxdy £ (2)i/*m»(0 <f \z2 - zx | is. 
2 J JQ J OR 

One last remark: Let (x0, y0) be a fixed point of P and denote by 

1 <*•*> pdy — qdx 

CZQ.VO) W 

**(*, y) = I 
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the conjugate function of the solution z(x, y). z*(x, y) is continuous in 
P. From (ii) it follows that 

z*(a, 0) - z*(-a, 0) = 2a. 

7.3. If one tries to solve a similar problem, where the solution is 
required to tend to + <*> for approach of two or more straight seg­
ments of the boundary, new difficulties arise. We shall illustrate the 
situation with the case of two such segments, as indicated in Figure 5. 
On the open arcs dP\ and dP* two bounded continuous functions 
0i and 03 are given: | 0 i | , | 0 3 | ^M. We ask for a solution z{x} y) 
GC2(P)r\C°(P^JdPiKJdPz) of the minimal surface equation in P 

dPz 

which assumes the values 0i and 03, respectively, on dP\ and dPz and 
tends to + oo upon approach of every point of the open arcs dP% and 
dPA. 

Let z(x, y) be a solution of the problem. Denote by Zi, Z2, h, kf 

respectively, the lengths of the segments pip2t pipz, pzph Ptpi (see 
Figure 5). As before, we find that z*(pz)—z*(p2)=l2 and z*(pi) 
—z*(pi)=h while, due to the inequality p2+q2<W2, we will have 
\z*(p2)-z*(pi)\ </i , |z*(£4)--2*(£3)| </3. (If one of the arcs dPx or 
dPz coincides with the chord pip2 or pzpi, the last inequalities require 
a more elaborate proof.) The continuity of z*(x, y) now implies the 
inequality h+h<h+h as a necessary condition f or the existence of a 
solution. I t can be shown that this inequality is also a sufficient con­
dition for the existence of a solution. 

This interesting condition, found by H. Jenkins and J. Serrin, 
which, at first glance, appears quite surprising, can easily be made 
understandable by a heuristic consideration. Let us try to obtain the 
solution z(x, y) as limit of minimal surfaces z(x, y; n) which are equal 
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to <[>i and fa, respectively, on the arcs dP% and dPz and equal to n 
(where n^>M) on the segments ÖP2 and dP^. For n—»<*> two things 
may happen: Either the points of our minimal surfaces z(x, y; n) 
over the quadrilateral pip2pzp4 are all "pulled up," or they are not 
"pulled up" (see also statement (iv) in 11.13). In the first case the 
area of the minimal surface z(xy y) would very roughly be equal to 
hn+kn-\-A, where A is the area of the quadrilateral p\pipzp\- In the 
second case the area of the minimal surface z{x, y) would very roughly 
be equal to hn+hn+A + 8, where ô is the area of the part of P outside 
the quadrilateral. Considering that our minimal surface will realize 
the absolute minimum of the area, the second possibility will occur if 
h+h<h+h. The values of z(x, y; n) remain bounded as n increases, 
and our solution z{x, y) is obtained as limit for n—» <*>. 

7.4. As an example of a case where the boundary values are partly 
+ °° and partly — <*> let us consider the following situation for the 
unit circle P = {x} y\ x2+y2<l}. Let dP{ ( i = l , 2, 3, 4) be the arcs 
dPi= {x = cos 6, y = sin 0; ( 2 i - l ) 7 r / 4 < 0 < ( 2 i + l)7r/4}. We have 
h = h = h = h. Denote by zn(x, y) (» = 1, 2, • • • ) the solutions of the 
minimal surface equation in P with boundary values —n on dP\ and 
dPz and +n on ÖP2 and dP^ Using the symmetry of the solution, 
which follows from the uniqueness and by which zn(x, x) =zn(x, —x) 
= 0, and the lemma of 11.11 it is seen that the functions zn(x, y) con­
verge for n—*oo to Scherk's minimal surface (6') with b = (2)ll2/w 
in the square P 0 = {x, y; \x\, \y\ < 1 } and to — 00 or + 00 in the sets 
P i = {x, y\ y^l/(2y'\ x2+y2<l}, etc. By 11.13 the convergence of 
the functions zn(x, y) and any of their derivatives to the solution 
z(x, y) and the corresponding derivatives is uniform in every compact 
subdomain of P 0 . Scherk's minimal surface is the unique solution of 
the minimal surface equation in P 0 which tends to + 00 for approach 
of the vertical sides of P 0 and to — 00 for approach of the horizontal 
sides of P 0 . 

8. Generalization of a lemma of T. Rado. Let zi(x, y) and z2(x, y) 
be different solutions of the minimal surface equation, defined in a 
neighborhood of the origin, and assume that Zi(0, 0) =s2(0, 0). Z\(x, y) 
and z2(x, y) are real-analytic functions, and the difference 22(#, y) 
— Zi(x, y) has an expansion ]C^ i Pt(%i y)i where Pi(x, y) is a homo­
geneous polynomial of degree i. As has been observed by W. H. 
Fleming [3, p. 80], J. Serrin [2], and G. Vaccaro [ l ] , by substitution 
into (1), the first nonvanishing term Pj(x, y) in this expansion is 
affinely related to a harmonic polynomial. From this fact it follows 
that a neighborhood of the origin is subdivided by j è 1 smooth 
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curves into 2/ à 2 open sectors <n, (r2, • • • , c2y, such that s2(#, y) 
<zx{x, y) in OÏ, og, • • • , o-2/-i and s2(x, 30>*i(x, j ) in <r2, cr*, • • • , <r2y. 

A similar but weaker statement (depending on the regularity prop­
erties of the coefficients a,b, c) can be proved for the general equation 
(2), if one remembers that the difference of two solutions of (2) satis­
fies itself a certain linear elliptic differential equation and uses some 
well-known facts about elliptic differential equations; see, for in­
stance, R. Finn [6, p. 351], where a special case is treated. 

An argument due to T. Radó [4, p. 793], complemented by the 
general maximum principle II.5.1, in which now the exceptional set 
consists of finitely many boundary points, immediately leads to the 
following useful lemma which, in special cases and with special proofs, 
was recently employed by R. Finn [6], J. Serrin [2], and R. Finn and 
R. Osserman [ l ] : 

Given a Jordan domain P in the (x, y) -plane and 2n*z2 points 
pj (J = 1, 2, • • • , 2n) on its boundary dP, which bound 2n open subarcs 
dPiy dP2, • • • , dP2n. Let Zi(x, y) and z2(x, y) be twice differentiate 
{and hence analytic) solutions of the minimal surface equation in P. 
Assume that lim sup [z2(x, y) —Zi(x, y)] < 0 for approach of every point 
on the arcs dPu dP%, • • • , dP2 n-i and lim inf [z2(x, y)—z\(x, y)]>0, 
for approach of every point on the arcs dP2, dPé, • • • , dP2n. If, at a 
point po of P the two solutions Zi(x, y) and z2(xy y) and all their deriva­
tives of orders up to order k (k â 0 ) coincide, then the inequality k^n — 1 
must hold. 

For the proof consider the set of points in P , where z2(x, y) <zx(xf y), 
and let Qi, Q2, • • • be its components. If a component Qi has a 
boundary point on an arc 3P2y-i, by the assumptions this whole arc 
must belong to the boundary of Qi. Denote by Q(1), Q(z), • • • , Q^-v 
those of the components Qi, Q2, • • • , which have, respectively, the 
arcs dPi, 5P3 , • • • , dP2 n-i as part of their boundary. We know that 
a neighborhood of the point po is subdivided into 2(fe + l) open sec­
tors o*!, 0*2, • • • , <r2fc+2, such that z2(x, y) <Z\(x, y) in <rlf 0*3, • • • , 0*2̂ +1 
and z2(x, y)>zi(x, y) in <r2, 04, • • • , (r2k+2. Each component Q{1), 
(?(3\ • * • , Q(2n""x) can have points in common with at most one of 
the sectors <Ti, cr3, • • • , <r2k+i. Otherwise, for topological reasons, a 
component of the set of points in P , where z2(x, y)>Z\(x, y), would 
have all its boundary points in P . Since z2(x, y) — Zi(x, y) ^const , this 
is a contradiction to the maximum principle. For k ^ n there would be 
a sector <r2y_i which would belong to a component Q% different from 
Qd)f Q(s), . . . f Ç(2n-i)# All its boundary points, with the possible 
exception of the points pi, p2, • • • , p2n, would have to lie in P . By 
the general maximum principle this is not possible. Thus the assump­
tion k^n leads to a contradiction. 
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9. Bernstein's theorem. 
9.1. This celebrated theorem, which for S. Bernstein was only a 

special consequence in a more general situation (see [4, Theorem 6, 
p. 557]), but which has attracted considerable attention over the 
years, states that a minimal surface z = z(x, y), defined for all values 
of x and y, must be a plane. Bernstein's original proof contained a 
gap which was closed, independently, by E. Hopf [ l ] and E. J. 
Mickle [2]. Other proofs, partly valid for more general differential 
equations, have been given by T. Radó [2] and by L. Bers [2], [4], 
R. Finn [4], [5], W. H. Fleming [3, p. 83], E. Heinz [ l ] , E. Hopf [2], 
H. Jenkins [ l ] , K. Jörgens [ l ] , J. C. C. Nitsche [ l ] , [2], and R. 
Osserman [ l ] , [4]. (Of course, many of the a priori estimates and 
general theorems to be discussed later imply Bernstein's theorem.) 

By far the simplest of these proofs, due to J. C. C. Nitsche [ l ] , 
[2], proceeds as follows: Introduce the functions 

(8) 

ƒ> (*.y) 1 -f £2 pq 

——— dx + — dy = x + A(x, y), 
(o,o) W W 

ƒ' <*•»> pq 1 + q2 

— dx -\ ——dy = y + B(x,y), 
mm W W 

in which the integrals are known to be path independent. Three facts 
are easily verified: 

(i) The transformation (x, 3>)-**($, rj) enlarges distances, hence 
maps the (x, y) -plane in one-to-one manner onto the (£, rj) -plane. 

(ii) £ and rj are isothermic parameters on the minimal surface. 
(iii) The function fi= (p — i#) / ( l +PF), already considered by S. A. 

Chaplygin, is analytic on the minimal surface, i.e., an analytic func­
tion of f = £+W7. In fact, ft(f) —d(z+iz*)/dÇ> where z* is the con­
jugate function of z; see II.7.2. 

From I 0(f) I = [(T^—1)/(T^+1) ] 1 / 2 < 1 it follows by Liouville's 
theorem that 12(f) must be a constant. Thus p = const, q = const, i.e., 
the minimal surface must be a plane. 

9.2. The integrands in (8) are nothing but the two differentials, 
discovered by T. Radó [ l ] , 

(9) (F - qFq)dx + qFpdy, pFqdx + (F - pFp)dy, 

which are exact for any solution of the Euler equation of a regular 
variational problem (5) (i.e., a problem satisfying FJ)2)Fff(Z—F|fl>0), 
or even for any C^-solution of the Haar equations [ l ] associated with 
(5). Note that F~W for the minimal surface equation. 

The proof in J. C. C. Nitsche [ l] shows, that property (i) of the 
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mapping (x, y)—>(£, y), associated with a variational problem whose 
integrand depends on the combination œ = (p2+q2)112 only, is guaran­
teed, if the condition 

(10) F - pFq-qFq = F - coF' > 0, 

which already plays a role in the investigations of A. Haar [3] and 
E. J. Mickle [ l ] , is satisfied. A similar condition handles the case of 
a general variational problem (5); see H. Jenkins [ l ] . 

Simply as property (i) can be proved—once its validity and useful­
ness in combination with properties (ii) and (iii) had been observed— 
it was exploited in a number of papers; see, for instance, H. Jenkins 
[ l ] , [2], H. Jenkins and J. Serrin [ l ] , J. C. C. Nitsche [7], R. 
Osserman [4], J. Serrin [2, §2]. In fact, property (i) is basic for all 
the estimates of these papers. Only the method recently designed by 
R. Finn and illustrated in II.9.4, II.12.1 (second part), and II.12.2, 
allows one to replace a number of the proofs using property (i) by 
alternate proofs. 

We note that the line element and Gaussian curvature of the 
minimal surface z = z(x, y) are given by the formulas 

& - i ( l + I 12(f) |') \it I, 

(11) ^=_|Q,(f)|2(1+iy=_wi)(1+iv 
1 ' \ w) d&n) \ w) 

Here we have set Q= U+iV; see J. C. C. Nitsche [ l ] . For the Gaus­
sian curvature of a solution z=z(x, y) of (5) one finds 

(12) * ._*^(I±£Y. 
d(£,i) \ W ) 

Here we have set Q=(p—iq)/(l+F) = U+iV; see H. Jenkins [ l , 
p. 713]. 

These similarities make it understandable that, under condition 
(10) and suitable further conditions on the integrand Fy in conjunc­
tion with theorems on mappings of sufficiently slowly growing eccen­
tricity (0(f) is, in general, no longer an analytic function of f), Bern­
stein's theorem, and other theorems as well, hold for solutions of (5). 

9.3. While the first proofs of Bernstein's theorem were qualitative 
in nature, E. Heinz and F. Rellich gave a quantitative proof, based on 
certain a priori estimates by E. Heinz [ l ] : 

Let z = z(x, y) be a minimal surface, defined over the disc x2+;y2<i£2 . 
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The value KQ of its Gaussian curvature at the origin satisfies the in­
equality 

(13) \Ko\ £—> £1 = 

Inequality (13) was sharpened by E. Hopf [2] and improved by 
J. C. C. Nitsche [ l ] , [7] and R. Osserman [4]: 

Let z = z(x, y) be a minimal surface, defined over the disc x2+y2<R2. 
Then 

(14) \Ko\ ^ 
1 1 WQ

2R2 

For the proof, of which the following version is due to R. Osserman 
[4], denote by II the image of the disc P— {#, y\ x2+y2<R2} under 
the mapping (8) and by pR the distance of the origin in the f-plane 
from the complement of II. Let f o be a point of this complement, 
for which | To | = pR, X the half-open segment {f ; f = # 0 , 0 ^ t < 1} , and 
/ its image in the (x, y)-plane under the inverse mapping of (8). By 
(ID 

Rt* fds = ±- f(l + |fi(f)|2)Ur|. 
Jl I J\ 

Since | £2(f) | < 1 in | f | <pR (even in II), we have 

|o(r)| ^(PRa+ IrhCpiî + alrl)-1, 
where 

a = I 0(0) I = [(Wo - l)/(Wo + 1)]1/2, 

and hence 

, S T / . ' [ , + (TT5)>-««* 
On the other hand, | Î2'(0)| ^ ( 1 - a 2 ) / p R by the Schwarz-Pick 
lemma. By (11) 

1 1 ' ' \ wj WlR* Ll + a2J 

Thus we certainly have 

(15) a < Max J = 7.70145 • • • 

9.4. An interesting new proof of the inequalities (13), (14), based 
on an idea of R. Finn, was recently given by R. Finn and R. Osser­
man [ l ] . We present it here in a somewhat simplified version. With-
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out loss of generality, it can be assumed that po = p(Q, 0) ^ 0 , q0(0f 0) 
^ 0 , r(0, 0) ^ 0 , s(0, 0) = 0 , /(0, 0) = - r ( 0 f 0 ) ( l + $ / ( l + # D £ 0 . These 
relations can be realized by carrying out, if necessary, a rotation and 
some of the following replacements: x by y and y by x, x by —#, 
y by — 3>. None of these transformations changes the value of the 
Gaussian curvature. In view of a later application (in 11.12.1) we 
note that none of these transformations changes the value of the 
combination r2+2s2+t2 either. 

Consider Scherk's minimal surface 

z = 4>(x,y,k) = A<log cos! 1 - log cos( )> , 

a(ti) = k tan - 1 p0, /3(h) = h tan - 1 q0, 

defined over the oriented square 

Rk = {*, y; \x + a(h) | < TA/2, I y - PW | < x*/2}, 

whose first derivatives at the origin coincide with those of the solu­
tion z(x, y). Rh is contained in P as long as 

2R r / 2 y / 2 y - 1 - 1 

h^ho= f l + — t a n - ^ o ) + f 1 + — tan"1 q0) . 

The Gaussian curvature $(#, y; h) of the above surface, taken at the 
origin, is equal to 

1 (1 + frO'tt + go) $(0 ,0 ; h) = —— • 
w (ï + pi+qir 

We assert that the inequality | i £ o | ^ | $ ( 0 , 0; ho) | holds. Since 
|$(0 , 0; h) | increases with decreasing h (otherwise a number hi 
(0<Ai<A0) could be found so that \K0\ = | $ ( 0 , 0; hi)\, i.e., r(0, 0) 
= < M 0 , 0; Ai), 5(0, 0) =<M0, 0; Ai) = 0 , /(0, 0) = ^ w ( 0 , 0; Ai) (this fol­
lows from the fact that both functions satisfy the minimal surface 
equation); by the lemma of II.8 this is impossible), we get 

2?Vo| K0\ 

| f l + - tan-i ^ \ + f l + - tan"1 qA J < ,2 _|_ „2 4 1 + Pi + <& 
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Here a has the same meaning as in II.9.3. 
In order to combine the last two inequalities, let us set h(a) 

= Min(/(a), g(a)). A computation shows that 

(16) c2 ^ Max h(a) = 7.678447 • • • . 

9.5. The best values of the constants C\ and c2f i.e., the values 

(0) 1 2 1 (0) 1 2 2 1 

ci = Sup J R KQ\ , C2 = Sup I R WoKo\ , 

where the supremum is taken over all minimal surfaces z = z(xf y) in 
the circle x2+y2<R2, have so far defied all attempts a t their deter­
mination. Clearly cf^cf\ 

A lower bound is easily obtained if one considers the minimal sur­
faces JS„(X, y) of 11.7.4. By the uniform convergence the Gaussian 
curvature of the surfaces zn(x, y)} taken at the origin, converges to 
the Gaussian curvature of Scherk's minimal surface, taken at the 
origin. The latter has the value w2/2. So we find 

TT2/2 = 4.934807 - • • ^ c™ ^ 5.921407 

TT2/2 = 4.934807 • • • ^ cT â 7.678447 

10. Harmonic mappings and related questions. 
10.1. Since the components of the vector of a minimal surface 

are harmonic functions on the surface, the inverse functions x = x(%1r)), 
y = y(è> y) oi the transformation (8) are harmonic functions. Proper­
ties of harmonic mappings, i.e., mappings by (generally nonconju-
gate) harmonic functions, have played a role in the investigations of 
T. Radó [2], H. Lewy [ l ] , L. Bers [2], E. Heinz [ l ] , [4], E. Hopf 
[2], K. Jörgens [2], J. C. C. Nitsche [5], [8], [ l l ] , [14], R. M. Red-
heffer [ l ] , H. L. de Vries [ l ] , J. L. Ullman and C. J. Titus [ l ] , K. 
Shibata [l ] and others. Harmonic mappings in more than two dimen­
sions raise serious questions; see H. Lewy [3], B. Segre [ l ] , [2]. 

Let us consider the class Sfr of one-to-one harmonic mappings 
x = x(£, 77), y = y(£, rj) of the unit disc £2+?72^l onto the unit disc 
x2+y2^l, leaving the origin fixed, i.e., x(0, 0) =;y(0, 0) = 0 . The func­
tions x(£, rj) and y(%, rj) are assumed to be harmonic in £2+?72<l and 
continuous in £2+772^l. While there are—contrary to the situation 
for conformai mappings, where #(£, rj) and y(%, rj) are conjugate har­
monic functions—mappings of class § , for which the Jacobian 
J(£i v) =d(x, y)/d(%, rj) (by a theorem of H. Lewy [ l ] , / (£, rj) cannot 
vanish and therefore may be assumed to be positive), taken at the 
origin, is arbitrarily small, it has been shown by E. Heinz [ l ] that 
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the expression <£(£, r{)=x\+x2
1+y\+y2

v taken at the origin, can be 
bounded from below by a universal constant 

(18) d0) = Inf 0(0,0). 

The value of this constant is not known. Numerical estimates have 
been given by E. Heinz [ l ] , J. C. C. Nitsche [5], [8], [14], and H. L. 
de Vries [ l ] . The best estimate at present is 40) è 0.8952 (see J. C. C. 
Nitsche [14]). A similar inequality holds also for more general uni­
valent mappings; see P. Berg [ l ] , E. Heinz [2], [3]. E. Heinz [4] 
also proved that <£(£, rç)^2/7r2, uniformly .in %2+rj2<l. Again, the 
value of the constant 

(19) c r = I n f { Inf * ( { , , ) ! 

is not known. 
Applying the above inequality to the estimation (13) of the Gaus­

sian curvature, E. Heinz found that 40) = 8/40)-
J. L. Ullman and C. J. Titus [ l ] have estimated the expression 

^(£> v) =<£(£> v) +2 / (£ , v), taken at the origin, for mappings of a sub­
class § i of § . I t is easy to see that, in the notation of J. C. C. Nitsche 
[5] (merely replacing y = a+ip by f ^ + i r ? ) , ^(£, T?) = | W'(Ç)\2. If 
we set 

(20) c™ = Inf | *(0, 0) | , 

it is then clear that cf^l. However, the exact value of 40) IS n ° t 
known. Ullman and Titus conjecture that 40) = ló/V2 (see [l, p. 187]) 
and prove this equality for the subclass ^ i . The number 16/TT2, which 
is the limit value of <£(0, 0) and ^ ( 0 , 0) for a certain one-parameter 
family of harmonic mappings, had already earlier played a role; see 
E. Hopf [2, p. 522 and p. 801] and J. C. C. Nitsche [5, pp. 270-271]. 
One should also try to determine the constant 

(21) *«0) = Inf { Inf * & * / ) } . 

A lemma in the same spirit is the following (see J. C. C. Nitsche 
[11]): 

Denote by $(p) the class of all one-to-one harmonic mappings of the 
annulus 0 <p 2 <£2+rç2 < 1 onto an annulus 0 <r2 <x2+y2 < 1. Let R(p) 
be the least upper bound for all inner radii r, obtainable by mappings of 
this class. Then R(p) < 1 . 

The exact value of R{p) is not known at present. I t is my conjec­
ture that R(p) = 2p/(l +p 2 ) . 
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10.2. Let z(x, y) be a solution of the minimal surface equation in 
a simply connected domain P . Since the functions A (x, y) and B(x, y) 
of (8) satisfy the relations AV = BX and AzBy-~AvBx = l, there is a 
function Z(x, y) such that A = ZX, B = Zy, and the minimal surface 
equation is closely related to the Monge-Ampère differential equa­
tion 

\£A) £xx£yy &xy == 1 » 

We remark that in a similar fashion a connection between a regular 
variational problem, with integrand F(py q) depending only on the 
combination œ = (p2+q2)112 and satisfying (10), and the differential 
equation. 

\£à) £xx£yy £xy = J\^xx \ £yy) 

can be established. This relationship has not yet been exploited. 
Bernstein's theorem of 11.9 is a consequence of the theorem that 

a solution of (22), defined for all x and y, must be a quadratic polynomial. 
This theorem was first proved by K. Jörgens [ l ] , using the lemma of 
E. Heinz on harmonic mappings. A short elementary proof was given 
by J. C. C. Nitsche [2]. This proof is based on the property of the 
mapping % = x+Zx, r}=y+Zy, which was invented by H. Lewy [2] 
for other purposes, to enlarge distances, and on the fortunate fact 
that the complex-valued function {x — Zx)+i(Zy — y), in its depend­
ence on £ and 77, is an analytic function of f = %+irj with bounded 
derivative. 

Isolated singularities of solutions of the differential equation (22) 
and its connection with harmonic mappings have been investigated 
by K. Jörgens [2]; see also J. C. C. Nitsche [5]. Generalizations to 
higher dimensions, in different directions, have been given by E. 
Calabi [ l ] and H. Flanders [ l ] . The relation between the differential 
equation (22), two-dimensional Finsler spaces, and especially the two-
dimensional elliptic geometry has been uncovered and utilized by 
P. Funk [1], [2]. 

11. Consequences of the maximum principle. Comparison of the 
solution z(x, y) with certain auxiliary functions—solutions or super 
solutions of the minimal surface equation whose values or normal 
derivatives become infinite on certain parts of the boundary (Scherk's 
minimal surface (6), the surface (7), the functions <f>i of H.2.3, the 
function used by J. C. C. Nitsche [6], etc.)—leads to various ele­
mentary but useful facts. Some have already been discussed in 11.2 
and II.5.2. Another, proved by H. Jenkins and J. Serrin [l, p. 206] 
is the following: 
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Let A and B be complementary open subarcs of the boundary dP of a 
bounded convex domain in the (#, y)-plane and R the {closed) convex hull 
of B. 

Let z{x, y) be a solution of the minimal surface equation in P, and as­
sume that lim sup z{x, y)^M (lim inf z{x, y) ^m) for approach of any 
point on A. For any compact subset T of P— R there is a number N, 
depending on this subset, but independent of the solution z{x, y), such 
that the inequalities z(x, y) ^M+N {z{x} y)^m — N) hold in all points 
ofT. 

Denote by zk{x, y) the solution of the general Dirichlet problem 
in P with boundary values 0 on A and k>0 on B. Denote by Q and 
R the closed convex hulls of the arcs A and B, respectively. We are 
interested in the behavior of the functions zk{x, y) if k tends to in­
finity. By the preceding there is a function N — N{x, y), defined and 
finite in P — QC\R, such that the inequalities 

zk(x, y) g N(x, y) for (x, y) G P - R, 

zk(x, y) è * - N(x, y) for (x, y) E P - Q 

hold independent of k. We shall use this fact in 11.13. 
Observe that, for harmonic functions, or for solutions of uniformly 

elliptic equations, such a behavior is impossible by Harnack's in­
equality. 

For further theorems in this spirit see H. Jenkins and J. Serrin 
[ l ] and R. Finn [6], [7]. 

12. A priori estimates. Many of the details of the investigations 
discussed earlier depend upon a priori estimates for solutions of the 
minimal surface equation. Many such estimates have been improved, 
and new ones have been discovered, in recent years. 

12.1. Estimates of the second derivatives by the first. Estimates of the 
second derivatives in terms of bounds on the solution and its first 
derivatives have first been given by C. H. Müntz [ l ] and, later, in a 
more explicit form and in terms of the first derivatives alone, by 
E. Heinz [ l ] (with power W% in (24)). A somewhat sharper estimate 
is contained in the theorem (proved by J. C. C. Nitsche [4]; see 
also H. Jenkins [l, p. 198]): 

Let z{x, y) be a solution of the minimal surface equation over the circle 
x2+y*<R2. Then 

(24) rl + 2*o + /o ^ — Wl 
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Differentiating the relation p — iq = 2Q,/(l — \0\2), we find 

d / 2ti \ / d d\/ 2Q \ 

and an analogous expression for s — it. Estimating again, as in II.9.3, 
the derivative 0'(f) by the Schwarz-Pick lemma, we obtain, after a 
simple computation, 

rl + 2*o + à g — Wl(l + Wo)2 S — Wl 
R2 R2 

The best value 

(25) C60> = Svp{ R*W?(rl + 2sl + /*)}, 

where the supremum is taken over all minimal surfaces z = z(x, y) in 
the disc x2+y2 <R2, is not known. However, a better numerical bound 
is found using the estimation of 11.9.4. With the normalization (re­
membering the remark at the beginning) and the notations of this 
paragraph it follows from \K0\ g j $(0, 0; h0) | and the fact that z and 
<j> are solutions of the minimal surface equation, that ro=><£*x(0, 0; ho), 
|*oI ^i I<£i/i/(0, 0; h0)\ and, thus, 
2 2 2 

u<tL(0, 0; Ao)+*to(0, 0; h0)=— [(l+pî)*+(l+qî)*] 
K 

< 
4R2 W\ 

w\ 
^ - ^ f(po> qo). 

An analysis of the function ƒ(£, q) shows that ƒ(p, q)?*2ir2. Hence 
40)^27T2. An argument similar to that in II.9.5 shows that cf^ir2. 
Thus 

2 (0) 2 
(26) ir ^c7 ^2ir . 

12.2. Estimates of the first derivatives by the solution. Such estimates 
were first given by R. Finn (see [ l ] and [3, p. 410]) for bounded 
solutions and have since been improved and generalized by H. Jenkins 
and J. Serrin [ l ] and R. Finn [6] to positive solutions. Recently J. 
Serrin [2] gave a particularly short proof. I t is based on an idea of 
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R. Finn which, applied to a different question, has already been de­
scribed in II.9.4. 

Let z(x, y) be a positive solution of the minimal surface equation over 
the circle x2+y2<R2. Then 

(27) Wo ^ c8e**»l2R (so = «(0,0)). 

We shall give a simplified and slightly improved version of Serrin's 
proof. Without loss of generality, it may be assumed that £oèO, 
qo = 0. Consider the Scherk minimal surface 

. = * ( * , , ; a) = *(.) {log cos ( J L ) - log cos ( ^ ) } , 

a + (2R2 - a2)1'2' (a) = [ ; ) . h(a) = ( ), 0 < a < R, 

over the triangle Ra= {x, y\ 0 = x + a = \y\y \y\ <irh(a)/2}. This tri­
angle contains the origin x = y = 0 and is contained in the circle 
x2+y2<R2. We shall choose the parameter a in such a way that 
<£(0, 0; a)=z0l i.e., 

cos(a/h(a)) = *-*o/*<«>. 

This transcendental equation has exactly one root a = a0 in the inter­
val 0<a<R. 

Similarly as in II.9.4 we now assert that po ̂ <£*(0, 0; a0) (remember 
that qo=<t>y(0, 0; a ) = 0 ) . Since <£*(0, 0; a) = tan(a/h(a)) increases 
monotonically to + °° as a increases from 0 to R, there would other­
wise exist a number a\ (a0<ai<R) such that <£s(0, 0; ai) =po. By the 
lemma of 11.8 this is impossible. Thus we find 

W0 = (1 + Pl)m * (1 + &0, 0; a0))
m = e " ' * ^ 

and, by the equation relating z0 and a, 

Wo = «"•/« exp i(* - 1J log cos f - ^ - ) } =f((h)e?«1**. 

A computation shows that Sup0<a<i ƒ (a) = 1.03894. Thus (27) is 
proved with cs= 1.03894. 

Clearly, (27) implies an estimate of the gradient by the solution 
for bounded solutions: 

Let z(x, y) be a solution of the minimal surface equation in the circle 
x2+y2<R2

f and assume that \z(x, y)\ ^M. Then 

(28) Wo ^ c*e*M'2R. 

Here we certainly can take Co^c% exp{ — 7r|z0 | /2.R}. By an example 
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of R. Finn [6, p. 355] it is seen that the exponent TT/2 in (27) cannot 
be improved. That the factor 7r/2 in the exponent in (28) is the right 
one, was first indicated by a heuristic consideration of J. B. Keller 
[ l ] . In the class of all solutions z{xy y) of the minimal surface equa­
tion, defined in the circle P 2+y2<R2} and satisfying the 
conditions z(0t 0 ) = 0 , \z(x, y)\ <M, the solution which maximizes 
the expression W0 is characterized as solution of the generalized 
Dirichlet problem 11.3 which is equal to -\-M on an open subarc of 
dP of length irR and equal to — M on the complementary (open) sub-
arc of dP. The best value of the constant c8, i.e., 

(29) c r = Sup{l*V-"0 / 2 i e}, 

the supremum taken over all positive solutions of the minimal sur­
face equation in the disc x2+y2<R2, is not known. 

J. Serrin [2] (see also H. Jenkins and J. Serrin [l, p. 200] and 
R. Finn» [ó]) proved also the following form of the estimate (27) for 
small values of z(0, 0) : 

Let z(x, y) be a positive solution of the minimal surface equation in 
the circle x2+y2<R2. For every e > 0 there is a number o = S(e)>0 such 
that 

2 21/2 2 -f- e 
(30) (ƒ>„ + 50) û —— zo 

R 
for zoéR8(e). 

12.3. Estimates of the first derivatives by the area. 
Let z(x, y) be a solution of the minimal surface equation in the disc 

x2+y2<R2 and 7(5) the area of the minimal surface S defined by it. 
Then 

16/(5) 
(31) Wo Û —— e^w* . 

irR2 

This estimate (with exponent 64x7(5) /R2) was derived by R. Finn 
(see [ l ] and [3, p. 408] and corrections of [3] in [8]), using properties 
of topological mappings with bounded Dirichlet integral (for such 
mappings, see J. Lelong-Ferrand [l, especially Chapter II]) in com­
bination with a lemma of function theory, applied to the function 
£22(f), which we shall phrase here in the following way (Lemma 1, 
as it stands in R. Finn [3 ], is not quite correct ; see above) : Let ƒ (z) 
be analytic and \f(z)\ < 1 in \z\ < 1 . Then, for \z\ ^ p < l , the in­
equality 

holds. Here Mp = Ma,x\9\^p \f(z)\. 
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12.4. Estimate of the area by the Lx-norm of the boundary values. 
Let z(x, y)(E:C2(P)r\C°(P) be a solution of the minimal surface equa­

tion in a region P of area j P \, bounded by a rectifiable Jordan curve 
dP, and S the minimal surface defined by z(x, y). For any constant cf 

the inequality 

(32) I(S) g \P\ + [ \z-c\ds 
J dp 

holds. 
For the proof, approximate dP from the interior by analytic 

Jordan curves 6„ (» = 1, 2, • • • ) with interiors Pn. If Sn denotes the 
part of S over P n , then 

I(Sn)= f f Wdxdy= ff W~1dxdy + ff W~l{p2 + q2) dxdy. 
J J pn J J pn J J pn 

The first integral on the right is smaller than | p | . For the second 
integral we have 

if W~\p2 + q2) dxdy 

= ƒ ƒ [((* - c)pW~% + «z - c)qW~%] dxdy 

= f W~\z - c)[p dy - q dx] S f \z-c\ds. 

Inequality (32) follows for n—»oo. 
12.5. Estimate of the solution by the Ll-norm of its boundary values. 

We state the following theorem without proof. 
Let z(x, y)Ç:C2{P)r\Oi(P) be a solution of the minimal surface 

equation in a bounded convex domain P. Denote by Pa the subset of all 
points of P whose distance from dP is not less than d>0. There exists 
a constant M, depending on d, P , and fdP \z\ds only, such that the in­
equality | z(x, y) | ^ M holds in P d . 

(Explicit bounds for the constant M can be given.) This estimate 
allows us, by approximation arguments, once more generalizing 
Dirichlet's problem beyond the stage discussed in 11.3, to prove the 
existence of a solution of Dirichlet's problem for the minimal surface 
equation in a convex (not necessarily strictly convex) domain with 
boundary data which, as functions of the arc length of the boundary, 
are merely absolutely integrable. 

The uniqueness proof, however, hinges on an estimate of the kind 
formulated in problem 21 of Chapter VII. 

12.6. Harnack's inequality. Integrating inequalities (27) and (30), 

file:///z-c/ds
file:///z-c/ds
file:///z/ds
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H. Jenkins and J. Serrin [l, p. 203] obtain a Harnack-type inequality, 
valid for the minimal surface equation and more general equations. 
This inequality sheds light on the situation described in 11.11. Note 
again the sharp difference with respect to the situation for harmonic 
functions and uniformly elliptic equations, where a bound on 
Zo = z(0, 0) implies a uniform bound in every compact subdomain of 
x2+y2<R2. 

Let z(x, y) be a positive solution of the minimal surface equation in 
the circle x2+y2<R2. There are two functions Qi(t\ /x) and Q2(t;JU) such 
that 

( r Zo\ / r Zo\ 

r=(x2+y2)112. The functions Qi and Q2 have the following properties: 
For each /x^O, Qi(t\ /x) is a continuous and monotonically decreasing 

function of t in O ^ / ^ l , and (?i(0; M) =/*» (?i(l; M ) = 0 . 
For each /x>0, Qi(t', /x) is a continuous and monotonically increas­

ing function of t in an interval 0 ^ / < p ( / x ) < l , and (MO; M)==M» 

lim^pfc,) Q2(t; /x) = <*>. Here pQx) is a continuous and monotonically 
decreasing function in 0< /x< oo and limM_»0 p(/x) = l, l im^» p(/x)=0. 
Further, limM^0 Qiit; /x) = 0 , uniformly in every interval 0 ^ ^ / 0 < l . 

13. Compactness theorems. From the a priori estimates compact­
ness theorems can be concluded. These theorems are tools for the 
existence proofs of the earlier paragraphs. 

(i) Given a bounded sequence of solutions of the minimal surface 
equation in a domain P. There exists a subsequence whose functions, 
including their derivatives, converge to a solution of the minimal surface 
equation in P . The convergence is uniform in every compact subdomain 
of P. 

(ii) Let {zn(x, y)} be a sequence of solutions of the minimal surface 
equation in P, converging to a continuous function z(x, y) in P, uni­
formly in every compact subdomain of P. Then z(x, y) is a solution of 
the minimal surface equation in P, and the derivatives of the zn(x, y) 
converge to the corresponding derivatives of z(x, y), uniformly in every 
compact subdomain of P. 

(iii) Given a monotonically increasing sequence {zn(x, y)} of solutions 
of the minimal surface equation in P. Assume that there is a function 
M=M(x, 3 0 < ° ° , defined in P and independent of n, such that 
Zn(x, y) ^M(x, y) for all n. Then the functions zn(x, y) and their deriva­
tives converge to a solution of the minimal surface equation in P. The 
convergence is uniform in every compact subdomain of P . 

Combining the last theorem and the situation described in 11.11, 
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one is led to the following statement due to H. Jenkins and J. Serrin 
( [ l , p. 209]; see also R. Finn [6, p. 368]), which is used in dealing 
with the Dirichlet problem discussed in II.7.3: 

(iv) Let {zn{x, y)} be a monotonically increasing sequence of solutions 
of the minimal surface equation in a bounded convex domain P. Denote 
by V the empty or {by Harnack's inequality) open set of points in P in 
which the limit function z{x, y) is finite {and hence a solution of the 
minimal surface equation by (iii)). Each component of V is bounded by 
straight line segments and subarcs of the boundary of P. 

CHAPTER III . PLATEAU'S PROBLEM 

1. Generalities about surfaces. For the following remarks see also 
the books by T. Radó [7] and L. Cesari [ l ] . 

1.1 A surface S= {T, P] in Euclidean 3-space is a mapping T 
given by a real nonconstant vector %{u, v) = {x{u, v)> y{u, v), z{u, v)}, 
which is defined and continuous in a point set P of the {u, v)-plane, 
the parameter domain (usually an open set bounded by finitely many 
Jordan curves), or, more generally, on an abstract differentiable sur­
face P , the parameter surface (with or without boundary). Tech­
nically speaking, a surface 5 has to be defined as a maximal class of 
Fréchet equivalent mappings, and each mapping { T, P} of this class 
constitutes a particular representation of S. 

By definition, the topological properties of the parameter domain 
determine the topological type of the surface, regardless of its appear­
ance in space. Thus the surface 5i, represented by the mapping 

{x = cosh u cos v, y = cosh u sin v, z = u; u2 + v2 < <»}, 

is simply connected, while the surface 52, represented by the mapping 

( 1 + u2 + v2 1 + u2 + v2 

<x — u, y — v, 
I 2{u2 + v2) 2{u2 + v2) 

z = — \0g{u2 + v2) ; 0 < u2 + v2 < oo i , 

is doubly connected. Considered as point sets in space, both define the 
same surface, namely the catenoid (x2+y2)1 / 2 = cosh z. The second 
mapping is globally one-to-one ; the first mapping realizes an infinite 
covering. 

We shall adopt the definition to call a surface to be genuinely of 
the topological type of its parameter domain P if the mapping T of 
P into space realizes an imbedding, i.e., is one-to-one in the large. 

If the parameter domain is open, we speak of an open surface 
(surface without boundary). If the parameter domain is bounded by 
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N distinct Jordan curves in the (u, z/)-plane and if the vector %(u, v) 
maps these curves monotonically onto N distinct Jordan curves in 
space, then the surface is said to be bounded by the latter curves. I t 
is then characterized by the triple of numbers X(S) = [e, r, %]> where 
e = ± 1 describes the character of orientability, r is the number of 
bounding contours, and x denotes the Euler characteristic. I t is cus­
tomary to use catchwords, e.g., surface of the type of the disc 
(£(5) = [1, 1, 1]), surface of the type of the annulus (£(S) = [l, 2, 0]), 
surface of the type of the Moebius strip (X(S) = [ — 1, 1,0]), etc. 

A surface is called a saddle surface, if it has representation 
{£ = £(w, v)\ (u, i ; ) £P} for which all scalar products a-ic(ut v) with 
constant vectors û are Lebesgue-monotone functions in P . 

1.2. Let P be a bounded domain in the (u, v) -plane and P\ a point 
set between the interior P° and the closure P of P . In the applications, 
P will be an open connected set (such that P° = P) and Pi will be 
obtained from P by including all boundary points (in the investiga­
tion of Plateau's problem) or some boundary points (in the investiga­
tion of free boundary value problems). A surface S is said to belong 
to class ^5(Pi) (reminding one of the notation in J. W. Calkin [ l ] and 
C. B. Morrey [2]), if it possesses a representation {£ = £(#, v)\ 
(uy v)(EPi} in which the vector i(u, v) is continuous in Pi, linearly 
absolutely continuous in P°, and has square summable first deriva­
tives in P°. Then also the fundamental quantities E = }?w F=$u%v, 
G = %$ are summable in P°, and the area I(S) of such a surface is 
given by the classical integral 

/(5) = f f (EG - F*)u*dudv. 

The above representation of S(~^(Pi) is called almost conformai, 
if E = G, P = 0 a.e. in P°. If the vector i(u, v) is continuously dif­
ferent iate in P°, these relations hold in all points of P°. The repre­
sentation is then termed conformai. 

1.3. In general the mapping T is no immersion, i.e., not even 
locally one-to-one, and surfaces, considered as point sets in space, 
may look rather bizarre. By imposing certain conditions, it can be 
enforced that a surface, at least locally, corresponds better to the in­
tuitive picture one might have. (Self-intersections, self-contacts, 
coverings, and certain other unexpected peculiarities are still not 
excluded.) 

S is called a differential geometric surface, if it possesses a repre­
sentation {% = ic(u, v); (w, v)ÇîP}j whose vector belongs to class C2 

and satisfies the regularity condition ^ X f r ^ o in P°. If, in addition, 
the mean curvature H vanishes in all points of P°, then the surface 
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is called a minimal surface. We shall speak of a generalized differ­
ential geometric surface, or a generalized minimal surface—but this 
definition is only provisional—if the regularity condition is violated 
in isolated points of P°. 

2. The question of uniqueness. Plateau's problem, as it is generally 
understood, calls for a minimal surface of the type of the disc, 
bounded by a Jordan curve T prescribed in space.5 The classical 
methods produce a generalized minimal surface in conformai repre­
sentation as solution of Plateau's problem. If the curve T is capable 
of spanning surfaces (of the type of the disc) of finite area—which, 
for instance, is the case for a rectifiable curve or a curve with a simply 
covered convex projection under parallel projection upon a plane— 
then the above solution realizes the absolute minimum of the area 
for all surfaces of the type of the disc, spanned into T. 

Of course, there may be more than one minimal surface, bounded 
by T. Examples of Jordan curves bounding at least two different 
minimal surfaces of the type of the disc—one of them, not realizing 
smallest area, explicitly known; the other one, realizing smallest area, 
known to exist but not explicitly available—have been given by 
T. Radó [5, pp. 2-8], [6, p. 40], and N. Wiener (see footnote on 
p. 269 in J. Douglas [2]). The example of a contour, bounding infi­
nitely many minimal surfaces of the type of the disc, has been given, 
and related questions have been discussed by R. Courant [3, pp. 
119-122], and M. Kruskal [ l ] . Further examples have been suggested 
by P. Levy [ l ] , [2]. Applications of the theory of M. Morse by 
M. Morse and C. Tompkins, M. Shiffman, and R. Courant lead to 
deeper results. 

However, only a few cases seem to be known in the literature of 
curves T, for which it can be stated that they bound exactly one, or 
definitely more than one (let alone a given number), minimal surfaces; 
and for the latter case not a single example seems to exist, in which 
all the minimal surfaces in question are explicitly known. (For 

6 Actually, Plateau himself formulates his "general principle" only in the following 
way (see [l, p. 213]): "Let there be given a surface of vanishing mean curvature. 
Imagine drawn on it a closed curve subject only to the conditions: (1) that it bound a 
finite portion of the surface, and (2) that this portion does not exceed the stability 
limit, in case the surface has such limits. Give the exact shape of the above-mentioned 
closed curve to a thin wire of iron, oxidize the latter a bit with diluted nitric acid, 
completely immerse it into the glycerine solution, and withdraw it. Then it will be 
filled by a lamina which represents the portion in question of the surface . . . . In this 
way, as by magic, one represents surfaces which, generally, are quite strange. The 
only difficulty consists in the selection of the closed curve and the exact determination 
of its shape. However, one will easily manage, if one knows either the equation or the 
geometrical generation of the surface. * 
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minimal surfaces of the type of the circular annulus the situation is 
more favorable: Two coaxial unit circles in not too distant parallel 
planes (see IV. 1) as well as two interlocked unit circles in orthogonal 
planes bound two minimal surfaces of the type of the annulus.) 
T. Radó has proved uniqueness theorems under the assumption that 
the curve T has a simply covered convex projection under central or 
parallel projection upon a plane. 

3. The isoperimetric inequality. 
3.1. As pointed out in III.2, the solution of Plateau's problem 

always appears in conformai representation, and it has been customary 
in many investigations to suppose any minimal surface under scrutiny 
to be given in a conformai representation. The theorems proved then 
quite properly could be considered as theorems on triples of conjugate 
harmonic functions. 

To cite a notable example, most proofs of the isoperimetric in­
equality make this assumption. For such proofs, for minimal surfaces 
and more general surfaces, see T. Carleman [ l ] , E. F. Beckenbach 
[ l ] , E. F. Beckenbach and T. Radó [ l ] , [2], R. Courant [3, pp. 
129-131], A. Huber [ l ] , [2], S. Lozinsky [ l ] . The simple closed 
character of the bounding contour is of no consequence for these 
proofs. T. Reid [ l ] , and later C. C. Hsiung [ l ] , published an inter­
esting proof, which does not require the minimal surface under con­
sideration to be given in a special representation. However, it re­
quires continuous differentiability of the vector of the surface in the 
closure of the parameter domain. 

On the strength of theorems due to E. J. McShane [ l ] and 
C. B. Morrey [ l ] (see also L. Cesari [l, p. 484])—and here the simple 
closed character of I \ or, more generally, a nondegeneracy require­
ment, is essential—a minimal surface 5 of the type of the circular disc, 
bounded by T, admits of a conformai representation, provided its 
area I(S) is finite. Considering that there are Jordan curves which do 
not span any surface (of the type of the disc) of finite area, the ques­
tion arises for conditions on the curve V to ensure the finiteness of 

3.2. One would suspect that rectifiability of T implies finiteness of 
I(S). But it was only very recently that this conjecture was confirmed 
by C. Z. Sefel' [ l ] . 6 His proof is quite complicated, and so far only a 
sketch of it has appeared. Sefel' shows that a saddle surface of the 
type of the disc, bounded by a rectifiable curve, has finite area and 
satisfies the isoperimetric inequality. 

As we shall see below, the essential part of the proof consists in 
6 Added in proof. Actually, this case can also be deduced from the investigations of 

E. F. Beckenbach and T. Rado [l ]. 
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establishing the isoperimetric inequality for saddle surfaces of class 
$ (of finite area). In his investigations, Sefel' considers the plane 
mappings defined by the three pairs of components of the vector of 
the surface. 

Let S= { Ï = ÏO(^, v)\ (u, v)ÇEP}, where P denotes the closure of 
the unit disc u2+v2<l, be a minimal surface of the type of the disc, 
bounded by the Jordan curve T of length I. Let en I 0 be a sequence 
of numbers and S n = {ï=t)w(^, v); (u, fl)£P} a sequence of poly-
hedra, bounded by simple closed curves Tn of length lni such that 
|/n—1\ ^en and | \)n(u, v)—%o(u, v)\ Sen for {u, v)Ç.P. For fixed n 
pose the problem of finding a surface of smallest area among all 
$(P)-surfaces {jc = ^(w, v); (u, v) = P } , bounded by Yn and satisfying 
in P the inequalities 

\x(u, v) - x0(u, v)\ g 2en, \y(u, v) - y0(«, v)\ ^ 2enj 

\z(u, v) — z0(u, v)\ g 2en. 

S n itself is an admissible surface for this problem. Let Sn,m be a 
minimizing sequence of admissible surfaces. The retractions 5n>m, the 
vectors of which have Lebesgue-monotone components, and for 
which I(Sn,m)^I(Sn,m), form also a minimizing sequence of admis­
sible surfaces. By well-known theorems (see, for instance, E. J. 
McShane [l]) a subsequence of the Sn,m converges to a limit surface 
§ni a solution of the problem. The surface Tn, obtained from Sn by 
McShane's process of removal of excrescenses [2], is a saddle surface. 
Thus it is seen that 5 can be approximated by saddle surfaces 
TnÇzty(P) of finite area, bounded by the curves IV 

3.3. It should be pointed out that Morrey's theorem, mentioned 
earlier in 111.3.1, has been extended by W. H. Fleming [2] to non-
degenerate surfaces of any finite topological type of finite area. 

The question, whether a minimal surface or a saddle surface (of 
higher topological type), bounded by rectifiable contours, has finite 
area, seems never to have been discussed in the literature. 

4. Branch points. 
4.1. While the topics touched upon in the preceding two para­

graphs are interesting and important, they do not affect the funda­
mentals and do not burden with doubt the reasonableness of Pla­
teau's problem, as does the matter of branch points, or, more pre­
cisely, points in which the regularity condition is violated. (We worry 
only about branch points corresponding to interior points of the 
parameter domain.) 

The behavior of generalized minimal surfaces in the neighborhood 
of a branch point and the complex relations, which exist between 
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various types of branch points on certain generalized minimal sur­
faces, have been discussed by L. Bers [2], [3], Y. W. Chen [ l ] , 
R. Courant [3, p. 123], and others. A generalized minimal surface 5, 
given in a conformai representation can, after a rotation and a trans­
lation, locally be represented in the form 

x = Re {kwm + awm+1 + • • • } , 

(34) y = Re { —ikwm — iawm+l + • • • } , 

z = Re {bwm+n + • • • } . 

Here w — u-\-iv, k is a positive constant, a and b are complex constants, 
and the dots stand for terms with higher powers of w. The branch 
point on 5 corresponds to the origin of the w-plane. The integers 
m — 1^1 and n —1^0 are called, respectively, its order and in­
dex. In each sufficiently small neighborhood of the point w = 0 
there are at least two distinct points w\ F^O, W2 5^0, which are mapped 
into the same point in space by the vector of the surface. I t does not 
follow from (34) that 5 has m different sheets in the neighborhood of 
the branch point. But Y. W. Chen proved the following statement: 

If the numbers m and m+n are relatively prime, then the surface S 
intersects itself in (m — l)(m+n) (curved) rays, the branch lines, issuing 
from the branch point. 

4.2. One would, without question, wish to obtain a minimal sur­
face (and not only a generalized minimal surface) as solution of 
Plateau's problem. However, there are only a few types of contours 
r for which it is known that the solution of the problem of least area 
or, for that matter, any generalized minimal surface, if it is given in 
a conformai representation, will not have branch points. By a theorem 
of T. Radó (see [4, p. 794], [6, p. 35]) this will be the case, provided 
there exists a straight line in space such that no plane through this 
line intersects the boundary curve in more than two distinct points. 
In particular, the assumptions of Rado's theorem are fulfilled for 
contours which possess a simply covered star-shaped Jordan curve 
as parallel or central projection upon some plane. 

4.3. Recently S. Sasaki [ l] gave a proof of W. Fenchel's theorem 
[l ] about the total curvature of a closed space curve, employing the 
theory of minimal surfaces. His proof reversed (and corrected, see 
J. C. C. Nitsche [13]) leads to new information about minimal sur­
faces. Let T be an analytic Jordan curve with arc length 5 and curva­
ture k(s) i^O. Let S= {% = x(u1 v); (u, z ; )£P} , where T is the closure 
of the unit circle u2+v2<l, be a generalized minimal surface of the 
type of the disc, bounded by T, given in a conformai representation. 
By a theorem of H. Lewy (see [5] and III.5.1) the vector of %(u, v) 
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is analytic in P, and S can have at most finitely many branch points. 
Let (ua, Va) (OJ = 1, 2, • • • , a) be the branch points of S of orders 
w « - l , corresponding to points in P , and (u^ v$) (j8 = l, 2, • • • , b) 
the branch points of S of orders M$— 1, corresponding to points on 
dP. An application of the Gauss-Bonnet theorem then yields the 
inequality 

k(s) ds^2T+ I I | K | do + 2TT £ («« ~ 1) + r Z (#/» - 1) 
r •/ •/ S a - l (3=1 

and, in particular, 

(36) 1 + £ ( « . - 1) g — f *(*) <fe - — f f | tf| A». 
a=»l 27T •/ r 2IT •/ •/ 5 

TTims /Ae surface S cannot have an {interior) branch point if the total 
curvature of V (which by FencheVs theorem can never be smaller than 2ir) 
is less than Air. If the curve T belongs to class C2, then the same con­
clusion can be drawn at least for a minimal surface of smallest area 
bounded by T. Statements about any generalized minimal surface 
would, of course, be desirable, but seem to depend upon information 
unavailable at present concerning the boundary behavior of minimal 
surfaces (see 111.5.2). 

4.4. Formulas (35), (36) might lead one to speculate. If it were true 
that a generalized minimal surface of the type of the disc—and now 
it would be sufficient to talk of a surface of least area—bounded by 
a knotted curve, contained a branch point, then inequality (35) 
would lead to a new proof of J. Milnor's extension [ l ] of FencheFs 
theorem. There are no topological reasons why a differential geometric 
surface of the type of the disc, bounded by a knotted curve, should 
have a branch point. So far the search for an example of a knotted 
Jordan curve T with the property that any generalized minimal sur­
face of the type of the disc, bounded by V (or, a t least, such a surface 
of smallest area), necessarily must have a branch point, has been 
without success. 

As a matter of fact, it has sometimes been conjectured that a 
reasonable (analytic, differentiable, rectifiable, polygonal, . . . ?) 
curve T, knotted or not, always bounds a minimal surface (without 
branch points) of the type of the disc. The decision of this question 
seems to be one of the most important problems in the classical theory of 
Plateau's problem. 

4.5. I t is interesting to note that in R. Courant's example [3, 
p. 123] of a generalized minimal surface, bounded by a Jordan curve 



1965] ON NEW RESULTS IN THE THEORY OF MINIMAL SURFACES 237 

FIGURE 6 

T, this curve is a knotted curve (an alternating torus knot). T also 
bounds a minimal surface of the type of the Moebius strip and, as a 
matter of fact, it is the latter surface which generally comes out in 
soap film experiments. 

This suggests that it might well be the insistence to obtain surfaces 
of least area of a prescribed, or at least restricted, topological type 
which is responsible for the occurrence of branch points. Various 
examples have been discussed in the literature of Jordan curves 
which bound minimal surfaces of different topological types. The 
best known of these, given by J. Douglas [5, p. 122], is sketched in 
Figure 6. We can consider this curve T as boundary of the 
domain D% = {<£, S; \ <t>\< ô} V {$, 0; \o\<ô] on the torus 
{x=(2 — cos <j>) cos 0, ;y=(2 —cos 0) sin 0, z=sin </>; \ <j>\ ^ x , | d\ S?r}, 
where ô is a small number ( 0 < S < 1 / 1 0 ) . Aside from bounding three 
different minimal surfaces of the type of the disc, T will also bound a 
minimal surface of the type [l , 1, l ] homeomorphic to ZJ5. I t can be 
shown that the area of a solution of Plateau's problem for T is greater 
than 27T(1 — S)2, while the area of the domain D6 is less than 16x5. 
Thus the minimal surface of type [l, 1, l ] of smallest area, bounded 
by T, has an area which is smaller than that of any minimal surface 
of the type of the disc, bounded by I \ 

W. H. Fleming [ l ] has given a more sophisticated example of a 
rectifiable Jordan curve for which the problem of least area with un­
restricted topological types has no solution of finite topological type, 
such that no surface of finite topological type realizes the least area 
among surfaces, bounded by I \ with no restriction on the types. 

5. Boundary behavior, 
5.1. Let 5 be a generalized minimal surface of the type of the disc, 
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bounded by a rectifiable Jordan curve T and given in a conformai 
representation S= {ï = ï(^, v)\ (u, v)ÇzP}, where P is the closure of 
the unit disc u2+v2<l. The vector %(u, v), for which we also write 
%(w), is harmonic in P and continuous in P. Let £*(ze;) be the vector 
conjugate harmonic to %(w). M. Tsuji [ l ] observed that the vectors 
%(eie) and %*(eie) are absolutely continuous in 0^9^2ir. He also 
proved an extension of the theorem of F. and M. Riesz [ l ] , according 
to which a null set on dP corresponds to a null set on T and con­
versely, and the fact that the mapping of P onto 5 is conformai in 
almost all points of dP. As a matter of fact, many theorems of func­
tion theory can be carried over to the present situation, i.e., to the 
theory of triples of conjugate harmonic functions. Investigations of 
this kind have been initiated by T. Radó and E. F. Beckenbach. 

Assume now that T contains an open analytic subarc To, corre­
sponding to the arc 70 of dP. In this situation the following funda­
mental theorem, due to H. Lewy [5], holds: 

The vector %(u, v) is analytic in P^Jyo and can be analytically con­
tinued across 70, i.e., the minimal surface S can be analytically con­
tinued (as minimal surface) across the arc IV 

An analysis of Lewy's proof shows that, once the surface is given 
in a conformai representation, the rectifiability of V is immaterial for 
the proof. This proof makes essential use of the reflection principle 
for analytic functions and does not seem to carry over to the case 
where the arc T0 is merely sufficiently often differentiate, unless cer­
tain a priori estimates can be proved, estimates for derivatives of the 
vector i(u, v) in terms of geometrical quantities of the arc T0 and of 
finitely many derivatives of its vector. 

5.2. So far the only estimate of this kind, which, however, is too 
weak for the above purposes, was obtained by S. E. Warschawski, 
combining the isoperimetric inequality with his method in conformai 
mapping [l ] : Assume that there are an open arc r 0 , containing the 
point $(eie°)> of the rectifiable curve T and a constant c ^ l such that 
the distance As, measured along To, of any two points fi, f2 on T0 

satisfies the inequality As^c\ £2 — £i|. Then we have 

(37) I I(w) - ï(^°) I g CI «>-«<* K «= • 
(1 + c)2 

For a continuously differentiate curve T it follows from this result 
that the vector %(u, v) belongs to class C°'P(P) for all ]8< l /2 . 

CHAPTER IV. DOUBLY CONNECTED MINIMAL SURFACES 

1. Experiments. Beautiful realizations of minimal surfaces can be 
obtained through soap films, spanned into a frame of thin wire con-
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sisting of one or several contours, by dipping this frame in a specially 
prepared soap solution and withdrawing it. Such experiments have 
been described in the classical works of J. Plateau [ l ] , G. van der 
Mensbrugghe [ l ] , C. V. Boys [ l ] , H. A. Schwarz (see [ l ] , Nachtrag 
on pp. 92-108) and others, and, more recently, among others, by 
G. A. Bliss (see [ l ] , especially pp. 119-127), R. Courant [ l ] , [4], and 
R. Courant and H. Robbins [l, pp. 385-397].7 

As anybody who has ever tried his hand at soap film experiments 
knows, however, it is not every time that a soap film develops in the 
frame. There can be two different reasons for this failure: Either a 
lack of skill on the part of the experimenter, or, more deeply seated, 
the mathematical fact that no minimal surface bounded by the curves 
of the frame exists at all. This point becomes already pertinent for 
frames consisting of two contours. In fact, while a Jordan curve in 
3-space always spans a (generalized) minimal surface of the type of 
the circular disc, the existence of a minimal surface of the type of the 
circular annulus, bounded by a system of two disjoint Jordan curves, 
depends very much on the configuration of these curves. A sufficient 
condition for the existence has been given by J. Douglas in famous 
papers [3], [7] and, in different versions, by R. Courant (see [3, 
especially Chapter IV]) and M. Shiftman [ l ] , [2]. Roughly speaking, 
this criterion guarantees the existence of a minimal surface S of the 
type of the circular annulus, bounded by two Jordan curves I \ and 
T2 without common points, provided these curves span a doubly-
connected minimal surface whose area is smaller than the sum of the 
areas of the two simply-connected surfaces of least area spanned into 
Ti and T2, respectively. 

Douglas's condition can be verified in many concrete cases. An 
interesting case is the one where the two curves I \ and T2 are inter­
locked. Nevertheless, even if Douglas's condition is violated, a mini­
mal surface of the type of the annulus, bounded by I \ and T2, may 
still exist. This fact is well illustrated with the classical experiment 
where the curves I \ and T2 are coaxial unit circles in parallel planes, 
say the planes z — —h and z — h {h > 0) ; see for instance the presenta­
tion in G. A. Bliss [ l ] . For h<hi = 0.5277 • • • Douglas's condition 
is fulfilled. For hi ^h^h2 = 0,6627 • • • Douglas's condition is vio­
lated ; yet the circles I \ and T2 still span a doubly-connected minimal 

7 G. van der Mensbrugghe has this to say about the experiments of Plateau 
(see [2, p. 433]): "There is, to our knowledge, no example where the observation 
would have supported the theory with more ravishing forms. What could appear 
more beautiful to the eyes of a mathematician than these weightless models, adorned 
with the most brilliant colors, and, despite their extraordinary fragility, of an astonish­
ing persistence.n 



240 J. C. C. NITSCHE [March 

surface, namely a catenoid (for h<h2 even two catenoids). I t is not 
before h exceeds the value h2 that there does no longer exist a mini­
mal surface of the type of the circular annulus bounded by Ti and 
r2 . All this can be discussed by means of simple transcendental equa­
tions. Actually, these equations tell us only that no catenoid exists. 
I t is a fact, however, that no minimal surface of the type of the 
annulus exists at all (see IV.3). If we, contrariwise, keep the distance 
2h fixed, but move the curves I \ and T2 sideways, we will again obtain 
a limit value d = d2(h) of their lateral distance d, such that no minimal 
surface of the type of the circular annulus bounded by Ti and T2 

exists for d>d2. The determination of this value d2{h) is possible, 
though considerably more complicated, and has never been carried 
out. 

2. Necessary criteria for existence. Speaking generally again it 
seems clear that the curves Ti and T2 will not span a doubly-connected 
minimal surface, if they are too far apart. Quantitative criteria mak­
ing this suggestion precise have never been given in the literature, 
however. I t may be of interest, therefore, to see such a criterion. 

Let us say that the Jordan curves Ti and T2 are separated by a slab 
of width r > 0 , if there are two parallel planes of distance r, such that 
the curves T± and T2 do not enter the domain between the planes and 
are separated by each of the planes. The following theorem holds 
(see J. C. C. Nitsche [17]): 

Given two Jordan curves Ti and T2 of diameters d\ and d2, respectively, 
which are separated by a slab of width r>0. If these curves bound a 
minimal surface of the type of the circular annulus, then the inequality 

3 
(38) r ^ — Max(^!, d2) 

must be satisfied. 
This inequality tells us how far, a t best, the curves I \ and T2 can 

be apart in order still to span a doubly-connected minimal surface; 
and in this sense it may be considered as a supplement to Douglas's 
condition. The inequality (38) is not sharp. If the curves I \ and T2 lie 
in parallel planes, say the planes z = Ci and z — c2 (ci<c2), respectively, 
a somewhat better result, which, however, is not sharp either, can be 
obtained; see J. C. C. Nitsche [15]: 

Let us choose a point pi = (xx, yu Ci) in the plane z — c±f in some sense 
the center of I \ , and a point p2 = (x2, y2, c2) in the plane z = c2, in some 
sense the center of T2. The distance between the two curves Ti and Tj 
can then be measured in terms of the two quantities r = c2 — C\ (verti­
cal distance) and d=[(x2—Xi)2+(y2—yi)2]112 (lateral distance). We 
further denote by ôi the maximal distance of the point pi from the 
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curve Ti and by 62 the maximal distance of the point pt from the curve 
T2. We can then state: 

If the curves I \ and T2 bound a minimal surface of the type of the cir­
cular annulus, then the distance between these curves must satisfy the 
inequality 

(39) (r2 + W 2 S *i + 81. 

3. The theorems of M. Shiffman. For such surfaces, i.e., minimal 
surfaces 5 bounded by curves Ti and T2 in two parallel planes z — C\ 
and z — c2, interesting facts have been discovered by M. Shiffman [3]. 
He proved that if the two curves Ti and T2 are convex, then also all 
curves Sc of intersection of S with the planes z = c {ci<c<c%) must be 
convex. Using the Sturm-Liouville theory applied to a differential 
equation, which also plays a role in the investigation of the second 
variation of the area, Shiffman also proves the deeper theorem that 
all the curves Sc (ci<c<c2) must be circles, if the curves Ti and T2 

are circles. Shiffman's proof assumes that the minimal surface S under 
consideration is already given in a conformai representation. If this 
is not the case it seems that certain regularity assumptions have to 
be made for Shiftman's theorems to be valid. 

Minimal surfaces which are generated by a family of circles in 
parallel planes had been determined already in the last century by 
A. Enneper [2] and B. Riemann [ l ] , who obtained their representa­
tion in terms of elliptic integrals. In fact, Enneper proved that if a 
minimal surface is generated by a one-parameter family of circles, 
then these circles must lie in parallel planes. From the explicit repre­
sentation it follows, in particular, that the minimal surface must be a 
catenoid, if the circles I \ and T2 are coaxial. I t is only the recent result 
of M. Shiffman, which tells us now—to be sure, under slight regular­
ity assumptions for the vector of the surface on the boundary—that 
any minimal surface of the type of the circular annulus, bounded by 
two coaxial circles, must be a catenoid. (For a surface of least area 
this follows, of course, by a symmetrization argument.) 

Minimal surfaces, which are bounded by two coaxial regular w-
polygons in parallel planes, and their explicit representation, have, 
under certain symmetry assumptions, been discussed by H. A. 
Schwarz [4]. He considers in particular the case w = 4. The case of the 
catenoid is obtained for w—> 00. 

4. Surfaces of class ©. Aside from the minimal surfaces which are 
generated by a family of circles in parallel planes, the minimal sur­
faces with a representation in cylindrical coordinates fall under the 
category of surfaces considered here. For the latter surfaces, each 
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curve Se is a star-shaped curve in the plane z = c (star-shaped with 
respect to the point x = y = 0). 

Let us more generally consider minimal surfaces S—and now we 
are talking of open surfaces—with the property that each curve Se 

is star-shaped with respect to an interior point, depending on c. Such 
a surface, defined in the slab \z\ < r , is called of class ©(r). 

A few years ago I had proved in [lO] (see also [3], [9]) that a 
minimal surface of class ©(<»)—or, more generally, a complete mini­
mal surface of class ©(r)—must be a catenoid. This means that a 
doubly connected minimal surface of class ©(r) cannot be continued 
to infinity, or to a complete surface, in both z-directions in such a 
way that all curves Sc remain star-shaped, unless the original portion 
of the surface is part of a catenoid. 

This result reminds one of Bernstein's theorem on minimal surfaces 
with a representation z = z(x, y). As we have seen in II.9.3 and II.9.4, 
quantitative proofs of this theorem construct a positive function 
M(R), tending to zero as i?—><*>, with the following property: If a 
minimal surface z = z(x, y) is defined over the disc (x — x0)

2 + (y —y0)
2 

<R2
y then its Gaussian curvature must satisfy the inequality 

|-K(#o, y0)\ ^M(R). Identically vanishing Gaussian curvature, of 
course, is characteristic for a plane. 

The question arises whether there is a quantitative analogue to 
Bernstein's theorem for the case of doubly-connected minimal sur­
faces of the type under discussion. Then, of course, it is first necessary 
to find a suitable property characterizing catenoids. I t turns out that 
the deviation from the circular shape of any individual curve Sc, ex­
pressed in terms of its length L and the quotient ki/k2 of its extreme 
curvatures, leads to a useful measure. Roughly speaking, the result 
will be the following: A minimal surface 5, which contains a non-
circular curve SCo, cannot be continued to infinity in both z-directions 
in such a way that all curves Se remain star-shaped. And more: It 
depends on the deviation of the curve 5Co from the circular shape, 
how far the continuation can be carried. I t may be possible to con­
tinue S in the described way to infinity in one z-direction, but not in 
both. 

It is my conjecture that similar results hold for surfaces of class 
3(r ) , i.e., surfaces defined in the slab \z\ <r for which all the curves 
Sc (\c\ < r) are Jordan curves, in particular, that a minimal surface 
of class 3 ( ° ° ) , i.e., a minimal surface which is intersected by all 
planes z — const in Jordan curves, or, more generally, a complete 
surface of class 3(r ) , must be a catenoid. But so far all attempts to 
prove (or disprove) this conjecture have been unsuccessful. 
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CO 
C = C2 

CD 
C=*Ct 

C — d 
(Ci<C2<C3<Ci) 

FIGURE 7 



244 J. C. C. NITSCHE [March 

Figure 7 (taken from J. C. C. Nitsche [lO]) gives an illustration of 
the general situation. I t shows for a special minimal surface the curves 
Sc in planes of various heights. One sees that, proceeding from nega­
tive values of c to positive values of c, the curves Sc are convex and 
almost circles at first. At a certain point they cease being convex but 
still stay star-shaped. Later on they lose this property too, remaining 
Jordan curves for a while, until finally they begin intersecting them­
selves, getting wilder and wilder for large values of c. 

Precisely, it is the following theorem which has been proved (see 
J. C. C. Nitsche [12]): 

Let S be a minimal surface of class <&(r). Denote by k\ and k2 the 
(non-negative) minimum and maximum curvatures of the curve SQ 

(intersection of S with the plane z = 0) and by L its length. There are a 
constant <Zo > 0 and a function M(q), defined for q^qQ and satisfying 
0<M(q) < l and M(q)—>1 for q—» oo such that 

(40) kx/h^Mir/L); 

i.e., for fixed L: The larger r the closer to one must be the quotient ki/k2. 
This theorem allows us to estimate explicitly how far, at best, a 

minimal surface, containing a noncircular arc SCQ, can be extended in 
both z-directions in such a way that all curves Sc remain star-shaped. 

5. The theorems of K. Leichtweiss. While catenoids are the proto­
types of the minimal surfaces considered in the preceding paragraphs, 
the helicoids are examples of surfaces for which all level curves Sc 

are open curves of infinite length. Inspired by the theorem that a 
surface of class ©(<*>) must be a catenoid, K. Leichtweiss (in yet un­
published work) proved two theorems characterizing helicoids. 

(i) Let S be a complete minimal surface satisfying the following as­
sumptions : 

(li) 5 has a representation 

{x = f(z, s), y = g(z, s); a < z < c2, - « < s < <»} 

where — <*> <; a < c2 ^ <*>, and ƒ and g have continuous second derivatives. 
s is the arc length on the level lines Sc= {x=f(c, s), y = g(c, s); — <x> <s 
< oo }, and the curve {x =f(z, 0), y = g(z, 0) ; Ci <z <c2} is an orthogonal 
trajectory of the level lines Sc. 

(2i) The level lines Sdx and Sd2 (ci<di<d2<c2) are straight lines of 
distance d2 — d\. 

(3i) The unit normal vector 36(JS, s) of S satisfies, uniformly for all z in 
di^z^d2, the relations 

(41) lim *(*,*) = - Urn *(*,*) = (0,0,1). 
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Then S is a right helicoid whose axis is parallel to the z-axis. 
(ii) Let S be a complete minimal surface satisfying the following 

assumptions : 
(lii) Assumption (li) of the previous theorem. 
(2ii) For each s 0 > 0 the Gaussian curvature K(z> s) of S satisfies 

Sup K(z, s) < 0 , where the supremum is taken over all Ci<z<c2 , \s\ ^s0. 
(3ii) (41) is satisfied uniformly f or z in Ci<z<c2. 

Then S is a right helicoid whose axis is parallel to the z-axis. 

CHAPTER V. COMPLETE MINIMAL SURFACES 

1. Generalizations of Bernstein's theorem. 
1.1. The proof of Bernstein's theorem given in II.9.1 uses certain 

properties of the function 0(f). This function has an obvious geo­
metrical interpretation: A point in the f-plane defines a point on the 
surface. The latter point is mapped by parallel normals onto the unit 
sphere. Mapping this spherical image by stereographic projection 
from the north pole into the equator plane the function 12(f) results. 

If one looks for the reasons why the proof of II.9.1 works, one will 
find it in the completeness of the minimal surface—from which by 
the use of the conformai mapping (8) and its property (i) the con-
formal parabolic character of the minimal surface follows—and in 
the boundedness of the analytic function Q(f )—from which it follows 
that the spherical image of the minimal surface is contained in a 
semi-sphere. 

L. Nirenberg asked whether a theorem similar to Bernstein's theo­
rem holds for minimal surfaces which do not necessarily admit a non-
parametric representation. In answer, R. Osserman [ l ] proved the 
theorem: 

A complete minimal surface, whose normals omit the neighborhood of 
some direction, must be a plane. 

1.2. We shall sketch here the proof for a simply connected minimal 
surface. (In the general case the universal covering of our minimal 
surface has to be considered.) The surface can be given in its Weier-
strass representation 

* = xo + Re f (3>2 - ¥2) df 

(42) y = yo + Re f i(& + * 2 ) d? 
Jo 

3= *o + Re f 2$##' 
J 0 
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where £ ranges over the normal domain P0—the unit circle |f| < 1 
(hyperbolic case) or the finite f-plane (parabolic case)—and where 
<£($*) and ^(Ç) are single-valued analytic functions without common 
zeros in P 0 . We remark that every minimal surface of the type of the 
open disc has such a representation (42) and, conversely, that every 
pair of functions <$(£)> ^ ( f ) w i t n t n e above mentioned properties, 
substituted into (42), leads to a minimal surface of the type of the 
open disc. The function a>(f) =Str(£")/<£>(£*) is realized, as was before the 
function &(£*), by the mapping of the minimal surface into the equator 
plane of the spherical image. We may assume that (0, 0, 1) is the 
direction whose neighborhood is omitted by the spherical image. Then 
the function <£(£") cannot vanish, and co(f) is bounded: |co(J*)| ^m. 

We shall now first prove that Po cannot be the unit circle, i.e., 
that the surface is of conformai parabolic type. To this end the fol­
lowing function-theoretic lemma, due to R. Osserman [5, p. 71], is 
used: 

Letf(Ç) be analytic andf(Ç) 5*0 in | J"| < 1. There exists a path y going 
from f = 0 to the boundary of |f| < 1 , such that 

f l/(r)| 1*1 <«>. 
Jy 

(In fact, f7\f(Ç) | | df | ^ |/(0) |.) Theorems of this type, in a consider­
ably more general setting, were first proved and used by A. Huber 
(see [3, especially Theorem 2, p. 20]). 

The arc length of a curve on the minimal surface is given by the 
relation ds = (| 3>| 2 +1 * | 2 ) | df | ^ (1 +m2) | $(f) 12| df | . Letting c be the 
image path of y on the minimal surface and identifying the function 
* 2 (D with the function /(f) of the lemma, we find for the length L 
of c, the inequality 

£ = fds= f ( | $ | 2 + M 2 ) l * | :g(i + ™2) f |$ 2 (r) | | * | < ». 
J e J y J y 

Considering that the path c leads to the boundary of the surface and 
that the surface is assumed to be complete, a contradiction is ob­
tained. 

Once we know that the normal domain P 0 is the whole plane, the 
application of Liouville's theorem to the function o?(f) again shows 
that this function must be a constant, and again it follows that the 
minimal surface must be a plane. 

1.3. Let us note that the variable co can be used in (42) in the 
neighborhood of a nonumbilical point in which the function <j> does 
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not vanish (an assumption which can be made without loss of gen­
erality). Then the classical representation of K. Weierstrass, 

/

• (a 

(1 - co'2)g(œ') dœ' 

(43) y = y0 + Re I i(l + œ'2)g(œ') dœ' 

/» <a 

z = zo + Re I 2œ'g(œ') dœ' 

is obtained (see, for instance, K. Weierstrass [ l ] , L. Bianchi [l , p. 
360], T. Radó [6, p. 38]). Each minimal surface is thus characterized 
by an analytic function. 

To cite a few well-known examples: The functions g(co) = l, 
g(o>) = -l/2œ\ g(ü>)=*72a>2, g(a>)=2/(l-co4), g(a>) = l - l / a> 4 , g(œ) 
= (1 — 14co4+co8)""1/2 lead, respectively, to A. Enneper's surface (exam­
ple (ii) in II.2.3), catenoid, helicoid, H. F. Scherk's surface (6'), 
L. Henneberg's surface [ l ] , [2], and the surface of H. A. Schwarz 
and B. Riemann (see II.2.4). 

How (43) can be made a global representation is illustrated in 
V.l.S. 

1.4. In a similar fashion as for Bernstein's theorem of II.9.3 a 
quantitative version of the preceding theorem can be given by prov­
ing an estimate for the Gaussian curvature (see R. Osserman [3], [4] 
and the remark on p. 75 of [5]): 

Let p be a point of a minimal surface and N a neighborhood of p. 
Let the distance along the surf ace from p to the boundary of N be at least 
d. Assume that f or some a>0 all normals to points of N form an angle 
of at least a with some fixed direction, and let the angle between this fixed 
direction and the normal at p be /3. Then the Gaussian curvature Kp at 
p satisfies the inequality 

(44) \KP\ £c(ayp)d-\ 

Here c(a, j8) is an explicitly given constant, depending on a and /3. 
1.5. Considering that Liouville's theorem plays a prominent role 

in the argument of V. 1.2, one might suspect that there will also exist 
an analogue to Picard's theorem. There are, however, examples of 
complete minimal surfaces, different from a plane, whose normals 
omit three or four directions. 

The surface of H. A. Schwarz and B. Riemann (see 11.2.4), con­
tinued across its sides by repeated reflection, is a complete minimal 
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surface whose normals assume every direction; A. Enneper's surface 
(example (ii) in 11.2.3) has a spherical image omitting one point; 
the spherical image of the catenoid and the spherical image of the 
(complete) right helicoid {x = u cos v, y = u sin v, z = v\ \u\, \v\ < °o } 
omit two points; the spherical image of H. F. Scherk's surface (6)— 
i.e., the complete infinitely connected surface (see below)—omits four 
points, namely co = ±ie±ia. (For the surface (6') the points omitted 
are co = ± 1 , ±i.) Other examples with three or four omitted points 
were given by R. Osserman in [5, p. 75 and p. 72]. K. Voss (according 
to a communication by R. Osserman) noted that one can prescribe 
arbitrarily f our points on the sphere and find a complete minimal surface 
whose spherical image omits exactly these points. 

One can determine such a simply connected minimal surface easily 
as follows: Let coi, co2, C03, co4 be four given points in the co-plane. In 
view of the possibility of a preliminary rotation of the surface to be 
determined, it is no loss of generality to assume that c o ^ 00 
(k = l, 2, 3, 4). Denote by R the extended co-plane, punctured at the 
points o)k, and by R the universal covering surface of R. Let co = co(f) 
be a one-to-one conformai mapping of the unit disc Po= {f; |f| < 1 } 
onto R and co the projection map of R onto R. Then the mapping 
co = co0(f) =&(&(£)) is locally one-to-one, and we have co0' (f) 9*0 in P 0 . 
We also may assume that co0(0) 9* 00. 

Now set g(co) = [(co—coi)(co—co2)(co —co3)(co—CO4)]"""1. Then the surface 

x = Re f \ l - « ; O « M f ) ) W G - 0 W 

(45) y = Re f *(1 + « Î O s M f r O W (f) # ' (f € Po) 

z = Re f 2co0(n^(coo(n)coo ,(n)^' 

is a minimal surface S with the desired properties, as we shall show 
presently. (Note the relation of (45) to (43) !) 

A path X in P 0 defines a curve on S. Its line element is given by 

ds = (1 + I coo(f) |2) I *(«o(f)) I I coo' (fr) I I # I 

= (i+ |«|*)U«)|M, 
where the last expression is defined on the image path X' of X in the 
co-plane. I t is clear from this that the points in P 0 , which are mapped 
onto co = 00, define regular points on S. I t is also clear that the spheri­
cal image of 5 omits precisely the points cô . As for the completeness, 
we proceed as follows. 
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Let X be a half-open path in P0> leading from the point f = 0 to the 
boundary of P 0 , and X' its image in the co-plane under the mapping 
co = co0(r). Three cases are possible: 

1. X' has finite length with respect to the Euclidean metric in the 
co-plane. Then X' must tend to a definite point co' ̂  oo. Considering 
that X leads to the boundary of P0J one sees that co' must be one of 
the points co*. 

2. X' has infinite length and stays in a compact subdomain of the 
(finite) co-plane. 

3. X' has infinite length, but does not stay in any compact sub-
domain of the (finite) co-plane. Considering that X leads to the bound­
ary of Po, X' cannot converge to co = oo. 

The length L of the curve on 5, defined by X, is equal to 

L= fds= f (1 + |«|*)|g(«)||d«|. 

It is easy to prove that L= oo in each of the three cases. Thus the 
minimal surface S is complete. 

I t is not claimed that S is genuinely simply connected (see III . 1.1). 
If there is a subcovering of R on which the coordinates of the surface 
are already single valued, then a surface of genuinely higher con­
nectivity is obtained. This situation is illustrated by H. F. Scherk's 
surface (6'), where g(o>) = 2/(1— co4), so that 

( 1 i - ca) 
x = Re < — l o g — — > 

It % + co; 

(46) y = Re <i\og > 

( 1 + co2) 
z = Re <log > . 

I 1 - co2/ 

If we take as parameter domain the minimal covering surface R0 of 
the extended co-plane punctured at co= ± 1 , ±it on which the func­
tions (46i,2) are single valued, it has been shown by R. Osserman 
(see [8, pp. 11-13]) that Scherk's surface is genuinely infinitely con­
nected. 

One might call the surfaces (45), whose explicit representation can 
easily be written down, general Scherk surfaces. To our knowledge, 
their geometrical properties (do they contain straight lines or inter­
esting families of curves as Scherk's surface does, etc.?) have never 
been studied. 
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I t has been conjectured that the number four entering the preced­
ing constructions might characterize a critical limit; see R. Osserman 
[8, p. 15 and problem 47 in Chapter VII ] . 

Of course, the normal map of the minimal surface upon its spherical 
image will in general not be one-to-one. It has been shown inde­
pendently by R. Osserman [8, p. 16] and K. Voss that A. Enneper's 
surface and the catenoid are the only surfaces whose normal map is 
one-to-one. 

1.6. Conditions concerning a special representation (as in II.9.1) 
or properties of the spherical image (as in V.l . l ) are convenient 
means of forcing a complete minimal surface to be a plane. 

I t would be interesting to find other geometrical properties with 
the same effect. For instance, one might think that the requirement 
that the minimal surface should be imbedded in space, i.e., the map­
ping T of P should be globally one-to-one, could be of this kind. The 
minimal surface of infinite genus, determined by E. R. Neovius (see 
[ l ] , where a beautiful photograph of this surface can be found in 
Table IV; see also D. Hilbert and S. Cohn-Vossen [l, p. 271]), as 
well as the helicoid, however, frustrate this expectation. 

2. Two lemmas. Of the various results in the spirit of the lemma 
stated in V.1.2, which are useful for the study of minimal surfaces, 
we mention the following two: 

(i) Let the function f (Ç) be analytic and f'(f) 5^0 in 0 < r i < | f | <r2 

< oo. There exists a path y leading from the point f 0 = [jWa]1 '2 (with 
ri< I To | <r2) to the outer boundary | f | =r2, such that 

(47) fl/(r)lkfl £M\m\*. 
J y 

Here p is an arbitrary number (1 </x<r2 /r i) , and 

M~-log(—)\ Min |/G-)|1 \ 

(ii) Let the function f (Ç) be analytic andf(Ç) ^ 0 in 0 < | f | < 1. There 
exists a path y leading from a point f0 (with 0 < |fo| <1) to the origin 
f = 0, such that 

f l/Golkl <». 
J y 

The first lemma constitutes a strengthened and quantitative form 
of an argument of R. Osserman [6, p. 397], the second was proved 
by G. R. MacLane [ l ] . 
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3. The theorem of Osserman and Ahlfors. It was the assumption 
that the normal domain P0 be the unit circle which, in conjunction 
with the boundedness of the function co(f), led to a contradiction be­
fore. However, the same contradiction arises already, if the function 
w(f) is expressible as quotient of two bounded analytic functions: co(f) 
= lKD/*(r) (|<KD| < 1 , | lKf) | <1) and thus, by a theorem of R. 
Nevanlinna [l, p. 190] is of bounded characteristic. Because then we 
get 

ds= ( | $ | 2 + | * | 2 ) | # | 

(M2+ |*bl#| ^2 'l#l 
If we (and without loss of generality we may do so) assume that the 
normals omit the direction (0, 0, 1), the function $(f) cannot vanish. 
From here on the proof proceeds as before. 

Now a theorem of O. Frostman [l, p. 101 ] states that a mero-
morphic function of bounded characteristic, denned in the unit circle, 
must be a constant, if its values omit a set of positive logarithmic 
capacity. Pointing out these facts, L. Ahlfors proved the following 
theorem which had been conjectured by R. Osserman (see [5, p. 
76]): 

A complete minimal surface, whose spherical image omits a set {on 
the sphere) of positive logarithmic capacity, must be a plane. 

Whether there are complete minimal surfaces, different from a 
plane, whose spherical image actually omits as large a set as one of 
vanishing capacity, is an open question; see V.1.5 and problem 47. 

4. Locally complete minimal surfaces. Using a modification of the 
first lemma of V.2, R. Osserman showed that 

if a minimal surface S is locally complete, i.e., if all paths leading to 
an isolated boundary component of S have infinite length, then either 
the normals tend to a single limit along all such paths, or else in every 
neighborhood of the boundary component the normals assume every direc­
tion with the exception of at most a set of logarithmic capacity zero. 

This result generalizes qualitatively a well-known theorem of L. 
Bers [2 ] to the effect that 

the first derivatives of a solution z{x, y) of the minimal surface equa­
tion, defined in the exterior of a compact domain of the (x, y)-plane, tend 
to a limit for x, y—* 00 : For large x and y an expansion 

z(x} y) = ax + by + c log(x2 + y2) + r(x, y) 

holds, where r(x, y) = 0 ( l ) and rx, rv = 0([x2+y2)-^2). 
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Extensions of this theorem to more general equations (2) have been 
given by L. Bers himself [4], [5] and by R. Finn [4] and H. Jenkins 
[2]; see also Johannes and Joachim Nitsche [ l ] . 

Added in proof. By the method of L. Bers it can also be shown that 
a solution z(x, y) of the minimal surface equation, defined and hounded 
in the exterior of a compact domain behaves like z(x, y)=z0 

+ 0([x2+y2]~1/2) for x, y—»oo. This remark may be useful for the 
discussion of the exterior Dirichlet problem for the minimal surface 
equation. 

5. Properties of complete minimal surfaces. The last theorems 
mark the beginning of far-reaching investigations, in many respects 
stimulated by H. Hopf, notably by R. Osserman, of the relations 
which exist between global geometrical and topological and con-
formal properties of complete minimal surfaces (properties of the 
spherical image, total curvature, topological type, conformai type, 
etc.). Exploiting function-theoretical theorems applied to a Weier-
strass-type representation of a complete minimal surface, R. Osser­
man discovered in recent years a number of interesting facts; see 
[6], [7]. We mention the following (S always denotes a complete 
minimal surface) : 

(1) There are three possibilities : (i) S has infinite total curvature. 
Then the normals to S assume every direction an infinite number of 
times with the exception of at most a set of vanishing logarithmic capac­
ity, (ii) S has finite, but not zero total curvature. Then the normals to S 
assume every direction with at most three exceptions, (iii) S has zero total 
curvature. Then S is a plane. 

(2) If in some neighborhood of the boundary of S the normals omit a 
set of positive capacity, then S is conformally equivalent to a compact 
Riemann surface with a finite number of points removed. 

(3) If S is either infinitely connected or conformally hyperbolic, then 
the total curvature of S must be infinite. 

(4) If S is finitely connected and conformally parabolic, then either 
S has finite total curvature or else the normals assume infinitely often 
every direction with at most two exceptions. 

(5) If S has Euler characteristic x and r boundary components then 
the total curvature of S satisfies the inequality 

(48) ƒ ƒ \K\io£2T(x-r). 

This is a strengthened version, valid for minimal surfaces, of the 
theorem of S. Cohn-Vossen [l ] for complete Riemannian 2-manifolds, 
which states that f f s \ K \ do ^ 27r%. 
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(6) The total curvature of S is either —kirn, for some integer w^O, 
if S is orientable, or — 2wn, if S is nonorientable, or else infinite. 

(7) The catenoid is the only complete doubly connected minimal sur­
face whose total curvature is equal to — 47r. 

A number of stubborn open questions still remain; see problems 
44-47 in Chapter VII. 

CHAPTER VI. FURTHER RESULTS 

1. Connection with boundary-value problems of function theory. 
I. N. Vekua (in a paper presented at the Joint Soviet-American Sym­
posium on Partial Differential Equations, Novosibirsk, 1963) dis­
cussed the realization in space of a simply connected portion of a 
minimal surface, free of umbilical points, with prescribed value of its 
Gaussian curvature along the boundary curve. While this problem 
(which has a multitude of solutions), for a surface assumed in its 
Weierstrass representation (43), leads to Dirichlet's problem for har­
monic functions, I. N. Vekua, working with a somewhat different 
representation, relates it to an interesting nonlinear boundary-value 
problem of function theory: To find a function f(z), analytic in 
\z\ g l , for which \f'(e")\ =k(0)(l + \f(eie)\2). Here k(0) is a given 
positive periodic function. Vekua transforms this problem into an 
integral equation for which he can show the existence of a solution. 

Nonlinear boundary-value problems of function theory and their 
connection with minimal surfaces in Weierstrass's representation 
have also been discussed by G. Bouligand [ l ] , [2]. 

2. Plateau's problem for systems of surfaces. Plateau's experi­
ments (see [ l ] and III.2) did not only concern surfaces bounded by 
simple closed contours, but, among others, also systems of surfaces 
spanning more complicated frames. The surface systems in these ex­
periments are bounded partly by free arcs (or branch arcs) along 
which certain surfaces meet. Thus a cubic frame is found to span 13 
surfaces and to have 12 branch arcs, a frame consisting of two coaxial 
circles is seen to span three surfaces and to have one (closed) branch 
arc. For a description of such experiments see also D. W. Thompson 
[l, Chapter VII ] , R. Courant [ l ] , [4], and R. Courant and H. Rob-
bins [l, pp. 387-389]. 

While the experiments are quite suggestive, the mathematical diffi­
culties of determining a system of surfaces of least area, bounded by a 
given frame and certain branch arcs (the shape of which has to be 
found also) are, even in simple cases, formidable. 

Recently, A. D. Solomon [ l ] attacked the problem in which the 
frame consists of three rectifiable Jordan arcs Ti, T2, Tz, joining two 



254 J. C. C. NITSCHE |March 

points p and q. The solution here will be a system of three surfaces, 
each of which is bounded by a branch arc joining p and q and by one 
of the arcs I \ . Using the methods of R. Courant (see [3, especially 
Chapter VI]) the existence of a solution is proved. The branch arc 
is seen to be continuous. In the special case where Ti lies in a plane 
and T2 and T3 are symmetric with respect to this plane, and assuming 
that the branch arc lies in this plane and, in fact, that the solution 
system of surfaces also is symmetric with respect to this plane, A. D. 
Solomon proves the analyticity of the branch arc in each interior 
point. The proof uses ideas of R. Courant [2] and H. Lewy [4], 
[5], [6]. 

3. Numerical methods. Numerical methods for the solution of 
Plateau's problem have only rarely been discussed. 

For the nonparametric problem, J. Douglas [ l ] , using a nine-point 
approximation formula, approximates the minimal surface equation 
by a system of difference equations and designs a step-by-step meth­
od for the solution of this system. D. Greenspan [ l ] replaces the 
derivatives zx and zy in the area integral JfWdxdy by difference quo­
tients, so obtaining a functional depending on finitely many param­
eters. The conditions for an extremal of this functional again lead to 
a system of difference equations. In both cases the resulting difference 
equations are nonlinear, a fact which causes numerical difficulties. 
L. Collatz [l, p. 68] applies his error estimates to check the accuracy 
of a trial solution in a special case. 

The parametric problem is discussed by W. L. Wilson [ l ] , who 
discretizes the problems of minimizing Dirichlet's integral or Doug­
las's functional and to a certain degree develops a "discrete theory" 
of Plateau's problem. His method can also be used for the computa­
tion of conformai maps. 

The papers of D. Greenspan and W. L. Wilson contain numerical 
examples and relate experiences concerning the computation. In no 
case are convergence proofs attempted.8 Aside from the necessity of 
a justification for the numerical methods, convergence proofs would, 
at the same time, constitute alternate existence proofs for Plateau's 
problem. 

8 J. Douglas writes in his paper [l, p. 185]: "The spirit of this paper being entirely 
numerical, we do not concern ourselves with theoretical questions of convergence, 
which are besides too difficult for us to deal with. Whether convergence occurs or not 
is indicated practically in each particular case by the behavior of the numbers ob­
tained in the course of the computation.n 
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CHAPTER VII. PROBLEMS 

The following pages contain a collection of a number of problems 
and questions, concerning those parts of the theory of minimal sur­
faces discussed in the previous chapters, which either have defied 
so far the attempts of their solution or might be worthwhile to be 
looked into. A few of these problems are of long standing; some have 
been suggested to me by the work of, or in conversations with, col­
leagues—R. Courant, R. Finn, H. Jenkins, R. Osserman, T. Radó, 
J. Serrin, J. E. Thompson, and others; others involve numerical com­
putations. The numbering of the problems corresponds to the order 
of the preceding paragraphs, and this correspondence is roughly indi­
cated in parentheses. 

Suggestions as well as communications concerning treatment of 
any of these problems would be greatly appreciated. 

Added in proof. Aside from the numbered problems listed below, 
several questions have already been raised in the preceding text. We 
mention the questions indicated by the remarks at the end of the 
first paragraph in II.10.1, after formula (23) in II.10.2, and in V.1.6, 
and the desirability of a thorough study of the "general Scherk sur­
faces" defined at the end of V.1.5. Also further investigations of 
Dirichlet's problem with incomplete boundary data (see 11.3 and 
II. 12.5) as well as further investigations of various versions of the 
exterior problem, initiated by L. Bers and Y. W. Chen (see II. 1.5 
and V.4), are indicated. 

1 (II.2.4; II.9.2). In connection with minimal surfaces, which have 
a simply covered convex curve as central projection upon a plane, 
the variational problem 

(49) Ô f J e2*[p2 + q2 + (1 + xp + yq)2]112 dxdy = 0 

plays a role. While the variational problem 

à f f [1 + P2 + q2]ll2dxdy = 0 

has been thoroughly investigated, problem (49) and its Euler equa­
tion have not been equally studied. (See T. Radó [5, especially foot­
note 10 on p. 16].) 

2 (11.2). A continued investigation of Dirichlet's problem of the 
minimal surface equation in nonconvex domains would be desirable. 
For instance, for nearly plane boundary curves I \ A. Korn's conditions 
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imply the existence of barriers in boundary points where the bound­
ary is locally mildly nonconvex. Find general facts. How does the 
Perron solution behave in the neighborhood of a boundary point, in 
which the boundary is not locally convex? In particular, how does 
the Perron solution of problem tyh behave in a neighborhood of the 
point Ci Is there any relation with a free boundary value problem, 
where the boundary values are prescribed only over the locally convex 
portions of the boundary and the solution surface otherwise is re­
quired to lie on the cylinder over the boundary? Is there any relation 
between the Perron solution and the "Bernstein solution" <£(#, y) of 
11.2.3 (assuming that it exists), whose values are given on the 
locally convex portions of the boundary and whose gradient tends 
to infinity upon approach of the remaining parts of the boundary? 

3 (II.5). Find more general sufficient conditions than given in 
II.5.1, or better still, sufficient and necessary metric conditions on 
the exceptional set A, for the general maximum principle II.5.1 to 
hold. 

4 (11.5). Let z(x, y) be a twice continuously differentiate solution of 
the minimal surface equation in the unit circle P = {x, y; x2 +:v2<i}. 
Simple examples show that the radial limits of z(x, y) for x2+y2—»1 
may be ± oo in finitely many points of dP. Describe the biggest sets 
on dP for which radial limits may not exist. How does z(x, y) behave 
in general for radial (or angular, etc.) approach to dP? Is there a 
Fatou type theorem? 

5 (II.5; I I .3; II.7). With the help of the general maximum prin­
ciple and a suitable solution of Dirichlet's problem II.7.2 the following 
maximum principle can be proved: 

Let P be a domain {bounded or unbounded) in the (x, y)-plane, con-
tained in a sector of opening angle smaller than 7r, and let A be a compact 
set of vanishing linear Hausdorff measure. Let z(x, y) be a solution of 
the minimal surface equation in P — A. Assume that lim sup z(x, y) 
^M (lim inf z(x} y) ^m) for approach of any finite boundary point of 
P, not in A. Then the inequality z(x, y)^M (z(x, y) ^m) holds in all 
points of P — A. 

On the basis of this theorem the existence of a solution of the gen­
eralized Dirichlet problem for unbounded domains can be proved. 

Can the theorem be generalized to apply to the difference of two 
solutions, as does the general maximum principle 11.5.1 for the case 
of a bounded domain? If the answer is affirmative, the uniqueness of 
the solution of the generalized Dirichlet problem for unbounded do­
mains can be proved. 

6 (11.6). Find more general sufficient conditions than given in 
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II.6, or better still, sufficient and necessary conditions on the excep­
tional set A, for the theorem on isolated singularities 11.6 to hold. 
(See problem 3.) 

7 (II.7.4). Let P be a convex quadrilateral. Prove that the condi­
tion li+h = h+h is necessary and sufficient for the existence and 
uniqueness of a solution of the minimal surface equation in P , which 
tends to — oo for approach of dPi and dPz and to + oo for approach 
to dP% and dP 4 (see Figure 5). Give generalizations to the case of 
convex 2w-polygons with boundary values which are alternatingly 
— oo and + oo. 

8 (II.9.1). The proofs of Bernstein's theorem by S. Bernstein [4], 
E. Hopf [ l ] , E. J. Mickle [2], and an intricate proof by W. H. Flem­
ing [3, p. S3] do not use function theory. Find such a proof which is 
as simple as possible. 

9 (II.9.5). Determine (or, at least, give a better estimate for) the 
constant cf\ 

10 (II.9.5). Determine (or, at least, give a better estimate for) the 
constant c^\ 

11 (11.10.1). Determine (or, at least, give a better estimate for) the 
constant cf\ 

12 (II.10.1). Determine (or, at least, give a better estimate for) 
the constant cf\ 

13 (II.10.1). Determine (or, at least, give a better estimate for) 
the constants 40) and 40)-

14 (II.10.1). Determine the function P(p) for 0 < p < l . 
15 (II. 12.1). Determine (or, at least, give a better estimate for) the 

constant 40)-
16 (II.12.2). Determine the constant c£\ 
17 (II. 12.2). Estimate (27) could at least be improved by the use 

of more sophisticated comparison surfaces than Scherk's, for instance, 
the solution of the minimal surface equation (i.e., the solution of 
Dirichlet's problem discussed in II.7.2) in a polygonal region, 
bounded by a chord of the unit circle and a polygonal arc on this 
chord inscribed into the unit circle, with values zero on the polygonal 
arc and + oo on the chord. While the determination of this surface 
is amenable to the classical methods, its explicit representation and 
applicability for numerical estimates seem not easy to secure. 

18 (II.12.2). Still more useful, but probably still harder to come by, 
would be the solution of the minimal surface equation in a circular 
segment with values zero on the circular arc of the boundary and 
+ oo on the chord, or a t least sharp estimates for this solution and 
its first derivatives. 
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19 (II.12.2). Similarly, in connection with estimate (28), much in­
formation would be desirable about the solution of the minimal sur­
face equation in a disc with values +M on a subarc of the boundary 
(in particular, a semi-circle) and — M on the complementary arc. 

20. Improve estimate (31). 
21 (II.12.5). Let zi(x, y), z2(xy y)£C2(P)r\C°(P) be two solutions 

of the minimal surface equation in a bounded convex (not necessarily 
strictly convex) domain. Let (x0, yo) be an interior point of this do­
main. Does an estimate of the form 

(50) | z2(x0, yo) — zi(xo, y0) | ^ c I | z2 — si | ds 
J OP 

(or a similar estimate) hold, where the constant c depends on the 
point (#o, yo)y the domain P, and the Z^-norm of the boundary values 
of Z\ and z2 only? 

22 (III.2). Find new conditions on the Jordan curve T which 
guarantee the uniqueness of a minimal surface (or a generalized mini­
mal surface) of the type of the disc, bounded by I \ 

23 (III.2). Give an example of a Jordan curve spanning (at least) 
two different minimal surfaces of the type of the disc, both explicitly 
known. 

24 (111.3.2). Give as simple a proof as possible of the isoperimetric 
inequality for saddle surfaces of finite area of the type of the disc, 
bounded by a rectifiable Jordan curve. 

25 (III.3.3). Let S be a minimal surface (or a generalized minimal 
surface) of the type of the circular annulus, bounded by two rectifia­
ble Jordan curves Ti and T2. Give an estimate for the area I(S) of 5 
in terms of the lengths of Ti and T2. If necessary, consider special cases 
(additional regularity assumptions, boundary curves in parallel 
planes, surface given in conformai representation, etc.). By IV.2 the 
existence of S implies that the curves Ti and T2 cannot be too far 
apart. Is there an isoperimetric type inequality? Is there a relation 
between 7(5), the lengths of the curves I \ , and the areas of minimal 
surfaces Si, S2 of the type of the disc bounded by I \ and T2, respec­
tively? 

26 (III.3.3). Let S be a minimal surface (or a generalized minimal 
surface) of given topological type, bounded by r rectifiable Jordan 
curves I \ . Give an estimate for the area of S in terms of the lengths 
of the curves I \ . If necessary, consider special cases (additional regu­
larity assumptions, surface given in conformai representation, etc.). 

27 (111.4). Find new conditions for the Jordan curve I \ such that 
any generalized minimal surface (possibly in a conformai représenta-
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tion) of the type of the disc, bounded by T, is a minimal surface, i.e., 
will not have (interior) branch points. 

28 (III.4). Give conditions on the curves Ti, T2, • • • , Tr, such that 
any generalized minimal surface (possibly in a conformai representa­
tion) of prescribed topological type, bounded by the curves I \ , is a 
minimal surface, i.e., will not have (interior) branch points. 

29 (111.4.4). Is there a Jordan curve T in space with the property, 
that any generalized minimal surface (possibly in a conformai repre­
sentation) of the type of the disc, bounded by T, must have an 
(interior) branch point? 

30 (III.4.4). Is it true that a reasonable (analytic, differentiable, 
rectifiable, polygonal, . . . ?) Jordan curve T, knotted or not, al­
ways bounds a minimal surface of the type of the disc, i.e., a surface 
without (interior) branch points? 

31 (III.5.2). Let T be a Jordan curve, bounding a generalized or 
proper minimal surface 5 = {$ = $(u, v)\ (u, p ) £ P } , P the unit circle, 
of the type of the disc (possibly in a conformai representation, pos­
sibly a surface of least area). Let To be an open subarc of T, possibly 
all of T, corresponding to the arc 70 of P . Under various regularity 
assumptions (short of analyticity) about the arc T0 find estimates for 
the derivatives of the vector £(w, v) in PW70. For an analytic arc T0 

find estimates for the derivatives of the vector %{u, v) in PU70 in 
terms of geometrical invariants of the arc TQ and of finitely many 
derivatives of its vector. 

32 (IV. 1). For minimal surfaces of the type of the circular annulus 
bounded by two regular w-polygons, inscribed into coaxial unit circles 
in parallel planes of distance r = 2hy compute the value h2(n), which 
is defined in the same way as h2 in IV. 1. The value h\(n), particularly 
for the case ft = 4, has been discussed by H. A. Schwarz [4]. We should 
have lim^oo h2(n)=h2. 

33 (IV. 1). Using the explicit representation in terms of elliptic 
integrals of minimal surfaces of the type of the annulus, bounded by 
two unit circles in parallel planes of distance r = 2h (see B. Riemann 
[l, pp. 329-333], A. Enneper [2], J. C. C. Nitsche [l0]) compute the 
function d2(h), defined in IV. 1 and the end of IV.2. Among other 
things this involves a determination of parameters, and the task is of 
great computational difficulty. d2(h) is defined for 0 <h^h2. Probably 
d2(h) is monotonically decreasing, and d2(h2) = 0, linu_0 d2(h) è l . 

34 (IV.2). Sharpen and, if possible, generalize estimates (38) and 
(39). 

35 (IV.3). Are there theorems in the spirit of Shiftman's results 
IV. 3 for other types of curves I \ and T2, for instance star-shaped 
curves (possibly satisfying additional conditions)? 
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36 (IV.4). For minimal surfaces of class ®(r) give an estimate of 
the type of (40) in terms of the distance d of the curve S0 from the 
boundary of S instead r. 

37 (IV.4). Is an estimate of the type of (40) valid for minimal sur­
faces of class 3>(r)? 

38 (IV.4). Is every minimal surface of class 3K<x>) a catenoid? 
39 (IV.4). Is every complete minimal surface of class 3(r) a 

catenoid? 
40 (IV.4; IV.S). Find theorems in the spirit of those proved in 

IV.4 and IV.5 characterizing special (at least, complete) minimal sur­
faces other than catenoid or helicoid. 

41 (IV.5). Give proofs of K. Leichtweiss's theorems under different 
or reduced assumptions; in particular, try to weaken or omit assump­
tions 2 or 3. Give quantitative versions in the spirit of the theorem 
in IV.4. 

42 (V.4). Give as simple a proof as possible (preferably one using 
little function theory) of the theorem of L. Bers to the effect that the 
first derivatives of a solution z(x, y) of the minimal surface equation, 
defined in the exterior of a compact domain of the (x, y)-plane, tend 
to a limit for x, y—> <*>. 

43 (V.5). For the proof of Theorem 2 in V.S (as well as for other 
theorems) R. Osserman uses the following theorem of A. Huber (see 
[3, Theorem 13, p. 61]): 

Suppose that the conformai metric eu{z)\dz\, defined on an infinitely 
connected Riemann surface 5, is complete. Then ffsK~~ do = <*>. 

(Here i£~~ = Max( — K, 0).) Huber's proof of this theorem is quite 
intricate. Considering that in its application to minimal surfaces only 
the special case is needed, where the Gaussian curvature of the sur­
face has compact support, it would be desirable to have a short proof 
of Huber's Theorem 13 for this case. 

44 (V.1.5; V.5). Is the covering surface R0—parameter domain of 
Scherk's surface (6') described at the end of V.1.5—of conformai 
hyperbolic or parabolic type? 

45 (V.5). Do there exist complete nonorientable minimal surfaces? 
46 (V.5). Is there a complete minimal surface of finite total curva­

ture whose normals omit exactly three directions? 
47 (V.5). There are examples of complete minimal surfaces, differ­

ent from a plane (of infinite total curvature), whose normals omit 
exactly four directions; see V.1.5. Are there such surfaces, whose 
normals omit more than four or exactly five directions, or, more gen­
erally, exactly a set of prescribed directions of vanishing capacity 
on the sphere? 
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48 (VI.2). Discuss the problem of A. D. Solomon under fewer 
assumptions about the symmetry of the solution system of surfaces 
and its branch line. 

49 (VI.2). Discuss other cases of Plateau's problem for systems of 
surfaces. 

50 (VI.3). Discuss methods for the numerical solution of the (para­
metric and nonparametric) Plateau problem and—most important— 
give convergence proofs. 
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