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The notion of an invariant set has been widely exploited in the 
theory of autonomous ordinary differential equations. The purpose 
of this announcement is to give a natural and useful generalization 
of invariant sets to almost periodic systems. The proofs and several 
applications and extensions of our results will appear elsewhere. 

We consider systems of n first order, almost periodic, ordinary 
differential equations of the form 

(E) x' = P(t, x) 

and perturbations of the form 

(PE) x' = Pit, x) + R(t, x) + G(t, x). 

The main result of this paper is Theorem 1 below. This rather ab­
stract-looking theorem motivates our generalization of invariant sets. 
Moreover, Theorem 1 has applications to perturbation theory and 
to the theory of Liapunov functions. In fact, several known results for 
asymptotic behavior of solutions of nonlinear systems may be proved 
using this result (cf. [ó], [7], [8], [lO], and [5, p. 69]). 

Let D b e a fixed open domain in w-space Rn. Let Q be a fixed subset 
of D which is closed in the topology of D. We assume that the func­
tions P , R, and G of systems (E) and (PE) satisfy the following 
hypotheses. 

(HI) R and G are continuous on IXD, 1 = {t; 0^t< oo }. 
(H2) P is continuous on R*XD and for each compact subset D* 

of D, P is uniformly continuous on R*XD*. 
(H3) For each fixed x in D, Pit, x) is almost periodic as a function 

of t in the sense of H. Bohr, cf. [4]. 
(H4) If y(t) is any continuous function on the interval / with 

values in a compact set D * C A then | G(t, y(t))\ £ £ i ( 0 , oo), where 
I G(Pi y(t)) | is the vector norm of G(t; y(t)). 

(H5) Rit, x)—>0 as t—»oo uniformly for x on compact subsets of Q. 
(H6) For each e > 0 and each x in Q there are numbers J H > 0 and 

5 > 0 such that whenever t â T and | x — y \ < 8 one has 
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| R(t, x) - R(f, y)\ <e. 

If P(t, x) satisfies (H2) and (H3), we shall call P(t, x) almost 
periodic in t. If P(t, x) is almost periodic in t, then the hull of P is the 
set of functions {P(t-\-h, x); — oo <h < °o }. The closed hull of P , de­
noted by H(P), is the uniform closure (over all t and over x on com­
pact subsets of D) of H(P). Using the set H(P), our main result 
may be stated as follows : 

THEOREM 1. Let x(t) be a solution of system (PE) defined on an 
interval /0 St < °° with values in a compact subset D* of D. If x(t)-^Q as 
t—»oo, then to each point z in the positive limit set of x(t) there cor re-
sponds a sequence /m-^oo asm—>°o, a function P*(tt x)Ç:H(P) and a 
function y(t) such that 

(a) y'(f) = P*(*, y{t)) for - oo < * < oo and y(0) =s , 
(b) x(t+tm)-+y(t) as m—><x> uniformly on compact subsets of 

— co < / < oo, and 
(c) P(t+tm> x)—*P*(t, x) as m—>so uniformly f or all t and x on com-

pact subsets of D. 

The conclusion of Theorem 1 suggests the following generalization 
of invariance for system (E) : If A CD, then A is called quasi-invari­
ant with respect to the system (E) if for each point zCA there exists a 
P*CH(P) and a solution y(t) of the system 

(E*) yf = F*(t, y)9 

with 3/(0) = 2, such that y(t) exists as a solution of (E*) and remains 
in a compact subset of A for — 00 <t< 00. 

The content of Theorem 1 is that the positive limit set of the solu­
tion x(t) is quasi-invariant with respect to system (E). Since the 
bounded solution x(t) must approach its positive limit set as t—»<*>, 
we have immediately: 

COROLLARY 1. Let the hypotheses of Theorem 1 hold. Let Q0 be the 
largest quasi-invariant subset of Q with respect to (E). Then x(t)—>Qo 
as /—>oo. 

Since the definition of quasi-invariance includes the notion of 
boundedness, we also conclude the following: 

COROLLARY 2. Suppose there is a P*CH(P) such that no solution of 
y' = P*(t, y) remains in a compact subset D*CD for — oo<^<oo. 
Then no solution x(t) of (PE) which is bounded in a compact subset of 
D can approach Q as t—> <*>. 
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We remark that Yoshizawa [lO] has proved Theorem 1 in the 
special case P{t, x) = P{x) is independent of /. We note that in case 
Q = D and R{t, x)=G(t, x ) = 0 , (PE) reduces to (E) and satisfies 
hypotheses (H1)-(H6). In this special case, Corollary 2 reduces to a 
result of Amerio [l, pp. 97-105]. Corollary 1 together with certain 
results of Yoshizawa [10, pp. 382 and 385] may be used to generalize 
some results of Levin [7]. 

LaSalle [6] obtains results on the asymptotic behavior of autono­
mous and periodic systems of differential equations by combining 
the method of Liapunov with the notion of an invariant set. Using 
Theorem 1 above, LaSalle's result may be generalized as follows: 

THEOREM 2. Let P{t, x) be almost periodic in t. Suppose there is a 
function V{t, x) such that 

(i) V{t, x) is locally lipschitzian in x and almost periodic in t, and 
(ii) the derivative V{t, x), defined by 

1 
V{t, x) = lim sup — {V{t + h, x + hP{t} x)) - V{t, x)), 

h-*0+ h 

is a nonpositive function which is almost periodic in t. 
Let 

A = ixGD; inf - V(t,x) = 0> 
v -oo<j<oo ; 

and let A 0 denote the largest quasi-invariant subset of A with respect to 
(E). Then all bounded solutions of (E) approach A0 as /—>oo. 

COROLLARY 3. If in Theorem 2 we have V(t> x) positive definite and 
AQ equal to the origin, then x^O is an asymptotically stable solution 
of (E). 

In view of Theorem 2 it would be interesting to know when system 
(E) admits a Liapunov function V{t, x) which is almost periodic in /. 
The following result provides a partial answer to this question. 

THEOREM 3. Suppose P(t, x) is almost periodic in t and is lipschitzian 
in x {uniformly in t). If x^O is a uniform-asymptotically stable solu­
tion of system (E), then there is a function Vit, x) satisfying the follow­
ing conditions: 

(i) F(/, x) is lipschitzian in x {uniformly in t) and is almost periodic 
in t, 

(ii) V{t, x)—K) as \x\ —>0 uniformly f or tGR1, 
(iii) V{t, x) is positive definite, and 
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(iv) the derivative V(t, x) with respect to system (E) is negative definite 
and almost periodic in /. 

The proof of Theorem 3 is similar to the proof of a converse theo­
rem given by Massera, cf. [9] or [2, pp. 155-157]. The function 
V(t, x) has the form 

/» 00 

V(t, x) = I G( | F(t + s,t,x)\) ds, 
Jo 

where F(t, /0, x0) is the solution of (E) through the initial point 
(toy Xo) and the function G(s) is chosen using Massera's lemma, cf. [9] 
or [2, p. 145]. 
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