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Recently the notions of monotone, demicontinuous and hemicon-
tinuous functions have been introduced in connection with nonlinear
problems in functional analysis (Browder [1; 2; 3; 4; 5], Minty
[6;7;8]). The object of the present note is to show that under rather
general conditions, hemicontinuity is equivalent to demicontinuity
for monotone functions.

Let X be a (real or complex) Banach space and X* its adjoint
space as the set of all bounded conjugate-linear functionals on X.
The value of fEX* at u &€ X is denoted by (f, #). We use the notations
— and — for strong convergence in X (or in X* or in the set of real
numbers) and weak* convergence in X*, respectively.

Let G be a function from X to X* with domain D=D(G) CX. G is
said to be demicontinuous if u,&ED, n=1,2,3, - - -, u&D and u,—u
imply Gu,—Gu. G is hemicontinuous if u&D, v&X and u+t0ED,
where ¢, is a sequence of positive numbers such that ¢,—0, imply
G(u+t,9)—Gu. We shall say that G is locally bounded if u,&D, u&D
and #,—u imply that Gu, is bounded. Obviously a demicontinuous
function is hemicontinuous and locally bounded.

G is said to be monotone if Re(Gu—Gv, u—v) =0 for u, vED.

These definitions may be void if D is too arbitrary. In what follows
we shall assume that D is quasi-dense. By this we mean that for each
u&D there is a dense subset M, of X such that for each v& M,
u-+twED for sufficiently small £>0 (the smallness of ¢ depending on
9). Thus any open subset of X as well as any dense linear manifold
of X is quasi-dense.

THEOREM 1. Let G be a monotone function from X to X* with a quasi-
dense domain D. Then G is demicontinuous if and only if it is hemi-
continuous and locally bounded.

Proor. By the remark given above, it suffices to prove the “if”
part. Suppose G is hemicontinuous and locally bounded. Let #«,—u,
Un, wED. We have to show that Gu,—Gu. Obviously we may assume
that u,#u.

Let M, be the dense subset of X used in the definition of D being
quasi-dense. Let v& M, and f,=|lu,—ul[/2. Then £,>0, t,—0,
w, =u-+1,9ED for sufficiently large » and
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) Gw, — Gu.
Now the monotonicity of G implies
(2) 0 = Re(Gun — G, % — w,) = Re(Guty — Gwn, Uy — % — tn0).

Gu, is bounded since G is locally bounded. Gw, is bounded by (1).
Hence

t! Re(Gun — Gwn, 4y — 1) — 0

because “t,rl(u,.—u)H =1,—0. Also (GW,, v)—(Gu, v) by (1). Dividing
(2) by ¢, and letting n— «, we thus obtain

3) lim inf Re(Gu, — Gu, —v) = 0.

(3) is true for any v& M,,. Since M, is dense in X and Gu, is bounded
in X*, it follows that (3) is true for every v& X. Replacing v by —v
(and also by =+14v if X is complex) and putting the results together,
we obtain

lim (Gu, — Gu,v) = 0, v € X.

This proves that Gu,—Gu, q.e.d.

REMARK 1. Theorem 1 shows that a monotone hemicontinuous
function that maps bounded sets into bounded sets is a notion
stronger than a monotone demicontinuous function. (Such functions
are considered in [2-11I] and [5].)

REMARK 2. It is not clear whether the assumption of local bounded-
ness in Theorem 1 can be eliminated. But this is the case if X is
finite-dimensional. We have namely

THEOREM 2. Let X be a finite-dimensional Banach space. Let G be
a monotone function from X to X* with a quasi-dense domain D. Then
G 1is continuous if and only if it is hemicontinuous.

Proor. Since continuity and demicontinuity are equivalent when
X is finite-dimensional, it suffices to show that G is locally bounded
if it is hemicontinuous; then the result follows from Theorem 1.

Suppose that G is hemicontinuous but not locally bounded. Then
there is a #&D and a sequence u,&D such that «#,—u but Gu, is
unbounded. We may assume without loss of generality that ||Gu,||
=s,— . Let M, be as above and let v& M,. Take a £>0 so small
that #+#w&D. Then by monotonicity

0 < 5,1 Re(Gun — G(u + tv), 4 — u — tv)

4
) = Re(s;'Gu, — s;7'G(u + tv), 4, — u — tv).
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Now s;1G(u#+tv)—0, u, —u—0 and s, 'Gu, is bounded. On dividing
(4) by t>0 and letting #— », we thus obtain

lim inf Re(s;'Gu,, —v) = 0.

As in the proof of Theorem 1, this leads to the result that s;"'Gu,
—0. But this is a contradiction, for ||s;'Gu,||=1 and weak* con-
vergence is equivalent to strong convergence.
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