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Recently the notions of monotone, demicontinuous and hemicon-
tinuous functions have been introduced in connection with nonlinear 
problems in functional analysis (Browder [ l ; 2; 3; 4; 5], Minty 
[6; 7; 8]). The object of the present note is to show that under rather 
general conditions, hemicontinuity is equivalent to demicontinuity 
for monotone functions. 

Let X be a (real or complex) Banach space and X* its adjoint 
space as the set of all bounded conjugate-linear functionals on X. 
The value of f (EX* a t uÇiX is denoted by (ƒ, u). We use the notations 
—> and —̂  for strong convergence in X (or in X* or in the set of real 
numbers) and weak* convergence in X*, respectively. 

Let G be a function from X to X* with domain D~D(G) C.X. G is 
said to be demicontinuous if un(E.D, n — 1, 2, 3, • • -, uÇ^D and H/ji 'U 
imply Gun-^Gu. G is hemicontinuous if uÇzD, vÇîX and u+tnv£D, 
where tn is a sequence of positive numbers such that tn-*0, imply 
G(u+tnv)—*Gu. We shall say that G is locally bounded if unÇ.D} uÇ^D 
and un—*u imply that Gun is bounded. Obviously a demicontinuous 
function is hemicontinuous and locally bounded. 

G is said to be monotone if Re(Gu — Gv, u — v) ^ 0 for w, VÇE.D. 
These definitions may be void if D is too arbitrary. In what follows 

we shall assume that D is quasi-dense. By this we mean that for each 
uÇiD there is a dense subset Mu of X such that for each vCzMu, 
u-\-tvÇzD for sufficiently small / > 0 (the smallness of / depending on 
v). Thus any open subset of X as well as any dense linear manifold 
of X is quasi-dense. 

THEOREM 1. Let G be a monotone f unction from X to X* with a quasi-
dense domain D. Then G is demicontinuous if and only if it is hemi­
continuous and locally bounded. 

PROOF. By the remark given above, it suffices to prove the "if" 
part. Suppose G is hemicontinuous and locally bounded. Let lA/yi ' 14/. 

un, uÇiD. We have to show that Gun-^Gu. Obviously we may assume 
that UnT^u. 

Let Mu be the dense subset of X used in the definition of D being 
quasi-dense. Let v(E.Mu and tn = \\un — u\\112. Then tn>0, /n—>0, 
wn = u+tnvÇzD for sufficiently large n and 
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(1) Gwn -> Gu. 

Now the monotonicity of G implies 

(2) 0 5s Re(Gun — Gwn, un — wn) — Re(G^n — Gwn, un — u — tnv). 

Gun is bounded since G is locally bounded. Gwn is bounded by (1). 
Hence 

tu1 Re(Gun — Gwn, un — u) —>0 

because IJ/iT1^ —w)|| —tn—>0. Also (Gwnt v)—>(Gu, v) by (1). Dividing 
(2) by tn and letting n—> oo, we thus obtain 

(3) lim inf Re(G#» — G«, — ») è 0. 

(3) is true for any uS-Mi*. Since M"M is dense in X and Gun. is bounded 
in X*, it follows that (3) is true for every z/£X. Replacing v by — v 
(and also by ±iv if X is complex) and putting the results together> 
we obtain 

lim (Gun — Gu, v) = 0, z; G X. 

This proves that Gun-+Guy q.e.d. 
REMARK 1. Theorem 1 shows that a monotone hemicontinuous 

function that maps bounded sets into bounded sets is a notion 
stronger than a monotone demicontinuous function. (Such functions 
are considered in [2-III] and [5].) 

REMARK 2. I t is not clear whether the assumption of local bounded-
ness in Theorem 1 can be eliminated. But this is the case if X is 
finite-dimensional. We have namely 

THEOREM 2. Let X be a finite-dimensional Banach space. Let G be 
a monotone f unction from X to X* with a quasi-dense domain D. Then 
G is continuous if and only if it is hemicontinuous. 

PROOF. Since continuity and demicontinuity are equivalent when 
X is finite-dimensional, it suffices to show that G is locally bounded 
if it is hemicontinuous; then the result follows from Theorem 1. 

Suppose that G is hemicontinuous but not locally bounded. Then 
there is a uÇ~D and a sequence unÇz.D such that un—+u but Gun is 
unbounded. We may assume without loss of generality that ||G#n|| 
= sn—>oo. Let Mu be as above and let vÇ.Mu. Take a ^>0 so small 
that u+tvÇ:D. Then by monotonicity 

0 S s^1 Re(Gun — G(u + tv), un — u — tv) 
(4) 

= Re(s^1Gun — SnlG(u + tv), un — u — tv). 
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Now s^Giu+tv)—>0, un — u—>0 and sülGun is bounded. On dividing 
(4) by t > 0 and letting n—> <*>, we thus obtain 

Hm inf 'Ke(sz1Guny —v) à 0. 

As in the proof of Theorem 1, this leads to the result that SnlGun 

—*0. But this is a contradiction, for H ^ G ^ H = 1 and weak* con­
vergence is equivalent to strong convergence. 
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