
LACUNARY TAYLOR AND FOURIER SERIES 

J.-P. KAHANE1 

To the memory of Jacques Hadamard 

Introduction. The history of lacunary Fourier and Taylor series 
goes back to Weierstrass and Hadamard, if not to Riemann. 

According to Weierstrass [49], Riemann told his students in 1861 
that the continuous function 

" $mn2x 

i n2 

is nowhere differentiable. As Weierstrass was not able to prove it 
(and, in fact, until now, it seems to have been neither proved nor 
disproved), he gave (1872) his famous example 

oo 

(2) ]T) an c o s ^n% 
i 

where X is an odd integer à 3, and a a positive number such that a < 1 
and aX>l+37r /2 : (2) is a continuous function which is nowhere 
differentiable [49]. Later on, Weierstrass's result was improved by 
Hardy: the previous statement holds under the assumption a X ^ l 
instead of #X>l+37r /2 [12]. In Hardy's version, that is a rather 
hard theorem ; as we shall see later, it can be made very easy. 

Hadamard (1892) proved that the Taylor series 

oo 

(3) X) an^n lim sup | an |
1/x» = 1 

1 7t-»oo 

has | z| = 1 as a natural boundary, whenever there exists a q> 1 such 
that 

(4) ^ ± i > g > i ( n - 1 , 2 , . . . ) [11, p. 116]. 
An 

(4) is known as Hadamard's lacunarity condition. We shall see that 
Hadamard's condition has played quite an important part in many 
directions. However, it is not what is needed about {Xw} to get that 
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\z\ = 1 is a natural boundary for (3). Fabry (1898) proved it under 
the weaker assumption 

ft 

(5) lim — = 0 [9]. 
n—> « \ n 

Pólya proved in 1942 that (5) is exactly the relevant condition [34]; 
for another proof, see [5]. 

The connection between gaps of a Taylor series and singular points 
of the represented function (or singular directions if the function is 
an entire one) has been studied extensively by many authors, and 
often treated in the more general context of Dirichlet series. Results 
prior to 1936 are reviewed in Mandelbrojt's pamphlet [28]. Newer 
results and references can be found in Bieberbach's and Schwartz's 
books [4], [40]. These references can be completed by [45], [8], 
[47], and [48]. We shall not discuss this aspect here. Instead we 
shall consider some problems about power series which have been 
worked out recently, and where Hadamard's lacunarity condition 
seems to be more relevant. 

In the theory of Fourier series, Hadamard's condition appears in 
many statements; see e.g. [55, Vol. I, pp. 202-212, 215, 230, 379-
380]. We shall t ry to discuss to what extent it is involved. Besides 
Zygmund's, two classical books at least are concerned with lacunary 
Fourier series: Mandelbrojt's Séries de Fourier et classes quasi-
analytiques de fonctions [29], and Levinson's Gap and density theo­
rems [27]. Roughly speaking, Zygmund's book is more interested 
in the properties of lacunary series, 

00 

(6) X) rn COS(\J + 4>n), 
1 

as series of almost independent functions or, what is the same, as 
series of almost independent random variables. Mandelbrojt's and 
Levinson's books (the latter in the line of Paley-Wiener's Fourier 
transforms in the complex domain) are mainly concerned with prop­
erties of quasianalyticity, uniqueness or continuation. 

I t will be convenient for us to discuss problems and results for 
Taylor as well as Fourier series by dividing our review into two parts. 

In the first one, we consider (3) or (6) as series of almost inde­
pendent functions. We try to complete the report that Kac made in 
1948 on this question [16]. 

In the second one, we give partial answers to a general question of 
Mandelbrojt [29]: assume that {Xn} is given; suppose we know a 
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property of a function given by (6) on an interval, or in the neighbor­
hood of a point, or on a perfect set without interior point; to what 
extent does it give information on (6) as a whole? 

Some results cannot enter in this review. In particular, we do not 
discuss many instances of conjectures in analysis which have been 
proved or disproved by means of lacunary Fourier series. Even so, 
we wish to give the feeling that the field of lacunary series, though 
very tiny, is a very fertile one. Therefore it may be better if a few 
people go on and plow it and are able from time to time to dig out 
new curious plants that grow therein. 

First part. I. Let us point out a few immediate or well-known prop­
erties of the series 

00 

(7) 2 2 a>ne2*i0in 

1 

where the an are complex numbers and the co» independent real vari­
ables in [O, l [ . We denote by £2 the compact set [0, l]0 0 , and write 
co=(coi, o>2, • • •, con, • • •)£=.& and ƒ(œ) = sum of (7) whenever (7) is 
convergent. 

1.1. Suppose ƒ bounded on Q; then 23i° \an\ <<*>. Precisely, 
00 

(8) Z ) I 0» I — S UP I / ( w ) I = S UP Ref(o>)-

1.2. Suppose 22i°° \an\ = °°i Hm^oo an = 0. Given any complex w, 
there exists co£Q such that (7) is convergent in co and ƒ(«) ~w. 

1.3. Suppose 23i°° \an\ < ° ° , and |on|^23»>- i \aj\ f ° r e a c n n-
Given any complex w in the closed disc | w\ g 23i°° I an\ » there exists 
co£0 such that f(co)=w. In other words, f(Qi) is the whole disc \w\ 

These properties are quite elementary. Let us introduce now the 
Lebesgue ( = Haar) measure on 0; then we can define the Fourier 
series of a gÇîLl(Q). 

1.4. All following statements are equivalent: 

(a) Z r k» l 2 <~, 
(b) (7) converges a.e. in Œ, 
(c) (7) converges a.e. in Q and /£Z>(12) (p g i v e n £ [ l , 00 [), 
(d) (7) converges a.e. in Q and exw*e.L1(Q) for all \ > 0 , 
(e) (7) is a Fourier series of a gGL^O), 
(f) (7) is a Fourier series of a gÇî&ityj (7) is convergent a.e., and 

/ = g a.e. in fi. 

1.5 (CENTRAL LIMIT THEOREM). Suppose 5 3 " ^ = °° frn^O), let 



202 J.-P. KAHANE [March 

N 

(9) SN(o>) = Z ) fn COS(2Tiœn) 
1 

and 

1/2 

m 1 

Given an interval / on the line, consider 

Then EN (I) is measurable in 0, and 

lim | EN(I) | = f er«*i*du. 
N->«> \Z2wJi 

lim sup = 1 a.e. in Q. 

1.6 (LAW OF THE ITERATED LOGARITHM). Moreover, suppose 

AN = sup | an \ = o(BN(log log BN)~1/2) (N->«>). 
n=>l,2,. . .,JV 

Then 

SN(O>) 

N->*X V2B2
N log log BN 

II . We ask what remains of these statements if we replace (7) by 

00 

(10) £ On62TiX»' 
1 

and (9) by 

N 

(11) SN(t) = X) rn cos(2irAn* + 0») (4>n real) 
1 

where {\n} is a sequence of increasing integers satisfying Hadamard's 
lacunary condition (4); we accordingly replace 0 by [0, l ] , co by /, 
ƒ(«) by ƒ(/). 

ILL A famous theorem of Sidon [41 ] asserts that the analog of 
1.1 is valid if (8) is replaced by 

CO 

£ M < K sup Re/(/) (K = K({\n})). 
l *e[o,i] 

A more precise form is 

file:///Z2wJi
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E I an I < K sup Rtf(t) (K = K(q), A = A{q)), 

(g being as in (4)) [50], [23]. 
11.2. The analog of 1.2 is valid. That was stated without proof by 

Paley [32], and proved by Mary Weiss [50]. An alternative proof 
can be found in [23]. More generally, given any closed connected set 
S in the extended complex plane (or Riemann sphere), there exists a 
t such that the set of limit points of partial sums of (10) is exactly S 
[23]. 

11.3. Under the assumptions 

I an\ g 7 £ I ayI , I w | g « Ê I a»| (7 = 7(q), 5 = 8(q)) 
n = l 1 

there exists a t such tha t f(t)=w [23]. In other words, the curve 
w=f(f) fills a disc. With a more stringent hypothesis (in particular, 
q had to be chosen big enough), that statement had been proved previ­
ously by Salem and Zygmund [37]. 

Each of the statements I I .1 , II.2, II.3 expresses that "there exists 
a t in [0, l ] such that . . . . " I t can be asked if the same holds when 
[0, l ] is replaced by a well-chosen totally disconnected set E, de­
pending only on {Xw}. The first statement in this direction goes back 
to 1930; Zygmund proved that the real part of (10) is convergent 
on a set which is everywhere dense and everywhere of the power of 
the continuum as soon as an = o(l) [53 ]. The question has been studied 
again recently, and here is an example of the results in [23 ] : each of 
the statements I I .1 , II.2, II.3 holds if we replace [0, l ] by a set £ of a 
Cantor type constructed in the following way. Let us fix a closed in­
terval I and a constant £ (0 <£ < 1/2). Let us remove from I an open 
subinterval situated in its middle and of length (1— 2£) | l | ; we get 
two closed intervals of length £| / | with each of which we repeat the 
procedure; keeping up this process we get a closed set E = E(I, £). If 
we choose \l\ >A/\± and £>£o (A=A(q), £o = £o(g)), each of the 
statements I I .1 , II.2, II .3, holds if t is restricted to £ ( / , £). We shall 
discuss later the connection between £ and g, which is not a very 
simple one. 

Let us go back to 11.2. A related problem is the following. Consider 

(12) ƒ(*) = E anz^ 
1 

lim supn^oo | an\
 x/x»= 1, y^00 \an\ = oo. Is it true that ƒ maps the open 

disc | z\ — 1 onto the whole complex plane? This was asked by Paley 
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in [32], and appears to be much more difficult than II.2. An affirma­
tive answer, when q is large enough, was obtained recently by Guido 
and Mary Weiss [52]. 

11.4. The analog of 1.4 holds completely; all proofs can be found 
in Zygmund's book. This statement contains theorems of Kolmogor-
off ((a)=>(b), [26]), Zygmund ((b)=>(a), [53] and about (a)=*(d), 
[54]), Sidon ((a)<=>(e), [42]). Moreover, if £ is a set of positive meas­
ure on [O, l ] , the statement remains true if we consider E instead of 
[O, l ] : that is a reformulation of a theorem of Zygmund [55, pp. 203 
and 206]. 

11.5. The analog of 1.5 holds completely with (11) instead of (9); 
the result is due to Salem and Zygmund [38]; for a history of the 
topic, see [16]. Recently, Erdös pointed out that it is not possible 
to relax the condition (4) in the general case; but, restricting himself 
to the case r » = l for all n's, he proved that the conclusion holds 
whenever 

Xn+l è Xnf 1 + - ^ - Y Cn = 0(1) (»-> co) [7]. 

\ vW 
For example, we can take 

An = [en*] with a > \\ 

it is not known if the conclusion remains valid when Xn = [eVn]. 
11.6. The analog of 1.6 holds completely. The first results in this 

direction are due to Salem and Zygmund [39 ], and the final statement 
to Mary Weiss [51 ]. 

I I I . Let us discuss now to what extent we need a lacunary condi­
tion on {Xw},to get such and such result. In the context of orthogonal 
systems, this question arises in Kaczmarz-Steinhaus' book [17], I t 
has deserved a certain amount of attention in the recent past years 
[44], [1], [19], [14], [36], [13]. 

I I I . l . Sidon sets. On account of II . 1, we say that a set À of integers 
(not necessarily positive) is a Sidon set if and only if the norms 

(13) Z U ( X ) | , sup |P(0 | 
t 

are equivalent for all finite sums Pit) = SxeA aÇK)eiU. Many equiva­
lent definitions can be given, namely, 

(a) A is a Sidon set, 
(b) whenever X)xeA a(k)eiU is the Fourier series of a bounded 

function, X ) | a ( ^ ) | <°°> 
(c) to every bounded function & on A, there is a bounded measure 

jit on [0, 2?r[ such that 6(X) =fe-iUdfi(t) (XGA), 
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(d) to every bounded function b on A, tending to zero at infinity, 
there is an fGL^O, 2w) such that b(K) = (l/2ir)fe-iUf(t)dt (X£A), 

(e) to every function % on A, taking only values 0 and 1, there exists 
a bounded measure /x on [0, 2w[ such that \fe~iUdfx(t)—xO^)\ â ô 
< l / 2 for every XGA, where 5 may depend on %• 

The proof of (a)<=>(b)<=>(c)<=>(d) can be found, e.g., in [36]; 
(e)=>(a) sharpens an analogous statement of [36, p. 208]. The use of 
(e) makes it easy to get all known structural conditions that imply 
A to be a Sidon set. 

All finite unions of Hadamard sets (i.e., sets { ±Xn}n==i,2,... satisfy­
ing (4)) are Sidon sets, and there exist Sidon sets which are not finite 
unions of Hadamard sets [44], [14], [36], 

If A is a Sidon set, there exists a constant C=C(A) such that, 
whatever may be the integers #i, #2, • • • , qn, s ( & ^ 0 , s > 0 ) , A con­
tains at most Cns of the numbers aiqi+ • • • -\-oinqn (oij integer, 
|«i I + • • • + | o j n | ^ 2 S ) ; in particular, A contains at most Cs ele­
ments between 2~s and 2s [19], For previous examples of lacunary 
sets which are not Sidon sets, see [6]. 

I t is not known if the union of two Sidon sets is necessarily a Sidon 
set. In this connection, there is a conjecture of Beurling: suppose that 
A is a Sidon set; does it imply that each characteristic function of a 
subset of A, defined on the integers, can be uniformly approximated 
by Fourier transforms of measures? An affirmative answer would 
prove that the union of two Sidon sets is a Sidon set. 

III.2. A(s)-sets. Following Rudin [36], we say that A G A (s) (s > 1), 
or that A is a A(s)-set, if and only if the norms 

/

2T / /» 2T \ 1 / S 

\p(t)\dt, (J |P(0|'*j 
are equivalent for all finite sums P(t)= XAGA a(k)eiU. As a conse­
quence of 11.4, Hadamard sets belong to A(s) for all s. More gener­
ally, each Sidon set belongs to A(s) for all s>l. In Rudin's paper 
[36] a series of interesting properties of these sets are considered. 

The most interesting class is A (2). An alternative definition of A(2) 
is the following: AGA(2) if and only if, given any function & on A 
such that 231 b(\)\ 2 < «5, there exists a continuous ƒ such that &(X) 
= (l/27r)fe^f(t)dt{\eA) [17], [14], [36]. 

Sidon, in 1932 [43], proved that, if A is a symmetric set ( \£A=> 
—XGA) and if the number of solutions of Xi—\2 = n (n given, Xi£A, 
X2GA) is uniformly bounded with respect to n, A£A(2) (see also 
[l4]). In fact, the hypothesis implies A£A(4). Until now, no A£A(2), 

A$A(4) , seems to be known. Here are some results and problems of 
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Rudin [36]. The union of two sets in A(4) belongs to A(4), but the 
analog is not known for A(2). Given A£A(4), there exists a C = C(A) 
such that A contains at most Cn points in an arithmetical progression 
of n2 terms; the only known fact for A(2) is that a A£A(2) cannot 
contain arbitrarily long arithmetic progressions; it is not even known 
if each A£A(2) has density zero. The set {l, 22, 32, 42, • • • } does 
not belong to A(4), and it is an open question if it belongs to A(2). 

111.3. Zygmund sets. On account of a theorem of Zygmund quoted 
after II .3, we shall say that a set A = {Xi, X2, • • • } (Xn+i^Xn) of posi­
tive integers is a Zygmund set if, whenever \an\ is a complex se­
quence tending to zero at infinity, the series 

00 

]C a>neiM 

1 

is convergent at least at one point. If (4) holds, A is a Zygmund set. 
In the opposite direction, Kennedy remarked that, to every <j>(t) I 0 
when /—» 00, there exists a A with 

• ^ > 1 + «XX») 
Xn 

which is not a Zygmund set [25]; a slight change in the proof shows 
that a Zygmund set cannot contain arbitrarily long arithmetic pro­
gressions. Nothing more seems to be known. 

111.4. Some investigations have been made on the following prob­
lem. Given A, find a positive function a(i) such that, if 

X) a(X)eiU 

XeA 

is the Fourier series of a continuous function, and \a(X)\ <a(X), the 
series is convergent to ƒ at every point; the partial sums are defined, 
as usual, as 

£ <*(X)«*' [2], [46]. 

As an example, 

*w vu 
can be associated in this way with every sequence A = { ±Xn} such 
that Xn^w2 (Tomic), but not a(t)=o)(t)/\/\t\1 whatever may be 
œ(t) Î 00 (Alpâr). 
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III .5. Paley sets. We finally consider a property of Hadamard sets 
which does not seem to be connected with an analogous property of 
series of independent random variables. In 1933, Paley proved that, 
given a n y / E L 1 (0> 27r), 

00 

0 

(all Fourier coefficients of negative order being zero), X^XSA | / ( W ) | 2 

< 00 whenever A is a Hadamard set of positive integers [31 ]. Of 
course, the same works if A is a finite union of Hadamard sets. Rudin 
proved the converse, namely, that every set A of positive integers 
which enjoys this property (Paley set) is a finite union of Hadamard 
sets. Here are alternative definitions of a Paley set: a set A of positive 
integers is a Paley set if, given 

E aOO**', E I <*(X) I2 < °° 
XEA 

there exists a series Xi^o b(n)eint such that the sum of both series 
is the Fourier series of a function which is bounded, resp. continuous, 
resp. bounded with constant absolute value [35]. 

Second part. I. In this section we shall discuss some problems of 
uniqueness or continuation for lacunary Fourier series 

00 

(15) X) rn cos (XJ + 4>n) (r„ ^ 0) 
0 

or Fourier-Taylor series 

00 

(16) E ane
iXnt (an complex). 

1 

For sake of simplicity, we suppose ]Cô 0 f n< 0 0 resp. X ) | a n | 2 < ° ° . 
We denote f (J) resp. F(t) the square summable function (resp. con­
tinuous, if it exists) whose Fourier series is (15) resp. (16). 

We first consider the following problem of Mandelbrojt [29, p. 
142]. Given {X»}, assume that ƒ has a property P on an arbitrarily 
small interval; does it imply that ƒ has the same property every­
where? We only give a few examples. 

1. Take as P the property to vanish (a.e.); we get a problem of 
uniqueness. The solution results from a recent work of Beurling and 
Malliavin [3] (for the derivation, see [2l]). It is as follows: in order 
that ƒ = 0 on an interval (a.e.) implies ƒ = 0 (a.e.), the following con-
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dition on {Xw} is necessary and sufficient: there exists an infinity of 
disjoint intervals [a4-, &,•[ on [0, <*> [ such that 

A / 1 1 \ r n(ai9bi) 
2 J - 1 = °°, l im- = 0, 
i \a>i ui/ »-*» Oi — ai 

n(a, b) =n(b) —n(a) being the number of points Xn on [#, b[. In other 
words, that means that the "jB-M-inner density" of {Xw} is zero, if 
we define .B-lf-gaugeable sequences of density D by 

ƒ «> dl 

\n(f)-Dt\ - < » 
and B-M-irmer density of A as the upper bound of the densities of 
J3-M-gaugeable sequences contained in A. 

2. Take as P the property to be represented as an absolutely con­
vergent Fourier series; it is known (Wiener) that, if ƒ has the property 
P in a neighborhood of each point, the Fourier series of ƒ is absolutely 
convergent. Given {\n}, it is the same to say (a) that every continu­
ous ƒ, given by (15), and satisfying P on an interval, satisfies P 
everywhere, or (b) that 

n(t + h) — n{t) 
lim sup = 0. 
a-»» i h 

Remark that (b) expresses that the "uniform outer density" of {Xn} 
is zero, if we now define gaugeable sequences of density D by 

»(/) - D(t) = 0(1) ( / - » « ) 

and outer density as the infimum of the densities of gaugeable se­
quences containing the given sequence. There are several properties P 
for which the solution is the same: for example, to have absolutely 
continuous derivatives of order 1, 2, • • • , ƒ > — 1, and derivative of 
order ƒ (defined almost everywhere) in L2 [19], [20 ]. Previous in­
vestigations in this direction are due to Noble [30 ] and Kennedy 
[24]. 

3. Take as P the property to be infinitely differentiable, resp. 
analytic. We only know the following: if {\n} has outer uniform den­
sity zero (for example limn-oo (Xn+i—Xw) = <*>), and if ƒ satisfies P on 
an interval, ƒ satisfies P everywhere. In the case lim(Xn+i—Xn) = <», 
the theorem is due to Wiener [33, p. 124]. 

II . We now consider two more problems of Mandelbrojt, which are 
problems of uniqueness, or quasianalyticity. 
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First, let <5({Mn}, {Xn}) be the class of infinitely differentiable 
f unctions ƒ satisfying (15) and 

(17) sup | ƒ<»>(/) I ^ KMn (n = 0, 1, • • • ; K = Kf). 
t 

We ask for a condition under which, if / £ 6 ( { A f » } , {Xn}) and 
fjf'yf", • * • vanish at the same point, it results in ƒ=(). 

To state the known results, it is convenient to suppose either 
M2n+i= °° (# = 1, 2, • • • ) or M B + i /M n increasing. A sufficient condi­
tion is 

# M2n 
lim mi ~ = 0. 

n->oo \ j • • • X n 

If {Xn} is a Hadamard sequence (Xw+i/Xnè#>!•)> it is necessary too, 
for there ex i s t s /oGe({M n j , {Xn}), such that /0(0) =/o (0) = • • • = 0 , 
and 0<sup< | / ( 2 w )(0 | ^ ï • • • X* [18]. 

Secondly, let J it) be an even function defined on [ — T, 7T], =^0 and 
vanishing at 0, and let Q(J(t), {Xn}) the class of functions/satisfying 
(15) and 

(18) \f(t) I £KJ(t) (K=Kf,\t\ £*). 

We ask if Q(J(t), {\n}) contains only the function 0, or not. I t has 
been proved recently that, if {Xn} is a Hadamard sequence, and J(t) 
satisfies a regularity condition (log J(t) convex function of log t), 

©(/(*), M) * {0} ^ / o G e(J(f), {Xn}), 

fo being the same as before. In other words, e i ther / 0 satisfies (18), or 
no ƒ9^0 given by (15) may satisfy (18) [15]. A former statement 
needed the stronger hypothesis 

± - ^ - < 00 [18]. 
1 Xn+i 

In the last statements, we do not know how far Hadamard's 
lacunarity condition can be relaxed. 

I I I . A problem of interest is the behavior of ƒ on closed sets with­
out interior points. Let us first recall a theorem of Zygmund: if 
{Xn} is a Hadamard sequence and if, on a set E of positive measure, 

ƒ (given by (15)) coincides with a function g defined in a neighbor­
hood G of E and analytic on G, ƒ is analytic [55, I, p. 206]. In par­
ticular, if / = 0 on £ , ƒ = ( ) . 

We now direct our attention to sets E(I, £) of a Cantor type, with 
ratio of dissection £, as defined in §1. All these sets have measure 0, 
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and £(ƒ, £) has Hausdorff dimension (log l/£)/log 2. We have seen al­
ready that, if {Xw} is a Hadamard sequence satisfying (4), there exists 
a £o = £o(g) such that, if £>£o, the only continuous/, given by (15), 
vanishing on £ ( / , £), is ƒ=(). We shall review a few results here about 
[20]. 

If | ƒ| >7T and £ > l / 3 , there exists a g > l such that, whenever 
{Xn} satisfies (4), the only continuous ƒ given by (IS) and vanishing 
o n £ ( J , £ ) i s / = 0 . 

In the opposite direction, suppose £ = 1/iV, N integer ^ 7, and fix I . 
Then, whatever may be the sequence {#w}, there exists a sequence 
{Xn}, satisfying Xw+iâ<ZwXn (w = l, 2, • • • ), and a continuous func­
tion F, given by (16), which vanishes on E(J , £). 

Some results depend strongly on number theoretical properties of 
£, as in the problem of uniqueness for trigonometric series ([55, 
Chapter X I I ] , or [22, Chapter VI]). We say that 6GS if and only if 
6 is a positive algebraic integer, 5^1, whose conjugates (T^0) are con­
tained in the open disc |s;| < 1 . We say that {X„} is {œp} -scarce if 
Xn+p—Xn^cop for each n and p (positive integers). Then 1 /££S is 
the necessary and sufficient condition in order that, whatever may 
be {o)p}, there exist an {œp} -scarce {Xn} and a continuous ƒ 7e 0 given 
by (15), vanishing on E ([O, 2TT], £). 

Moreover, if l / £ £ 5 , there exist a g > l , a sequence {Xn} satisfying 
(4), and a continuous .FT^O, given by (16), vanishing on E ([O, 2TT], £). 

Some more statements of this kind can be found in [20 ] and [22]. 
IV. Lastly, we shall indicate a few results which are both easy to 

state and to obtain. Let us consider f unctions ƒ given by (15). 
1. If ƒ is differentiable at some point, and {X„} is a Hadamard se­

quence, rn = ö(X^*1) (w—>oo). 
2. If ƒ(*) = 0( |* | *) when *-»0 ( 0 < a < l ) , and {X„} is a Hadamard 

sequence, f belongs to the class A«, i.e., 

!/(/ + *)-/(öl ^ 
SUp : : < oo . 

t,h | * | -

3. If {Xw} is not a Hadamard sequence, there exists an /(£A a such 
that ƒ00 = 0 ( | t\ a) when /-»0. 

4. If / ( 0 = O(| / |w) when t->0 ( n = l , 2, • • • ), and X n + i -X n>X? 
( w = l , 2, • • • ) ( a > 0 ) , ƒ is infinitely differentiable. 

Statement 1 is due to G. Freud [10, Theorem 5] ; it results immedi­
ately that Hardy-Weierstrass series are nowhere differentiable. Both 
statements 1 and 2 can be proved as follows [IS]: consider a trigo­
nometric polynomial Tn of degree ln less than inf(Xn+i—Xn, Xn— Xw_i); 
then 
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f(t)Tn(t) cos(\J + 4>n)dt / J Tn(t)dt 

and the proof reduces to finding a positive Tn such that 

\t\°Tn(t)dt < KC I Tn(t)dt; 
-7T J -r 

it is enough to choose as Tn the square of a Fejer kernel. 
Finally, remark that 2 and 3 give an example of a statement where 

Hadamard's lacunarity condition is both necessary and sufficient. 
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