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The problem of Goursat in its various forms has been studied ex­
tensively for hyperbolic differential equations in two independent 
variables, while similar questions for the equations with more than 
two variables have received much less attention than they properly 
deserve. One finds simple problems which do not admit any solution, 
although the same problems in two dimensions are well proposed. 
Other examples show that solutions with "correct" data may produce 
a curve of singularity in the interior.2 In this paper we study solutions 
of the wave equation 

Wxx + WXl'Xl' + WX2>Xi> — Wtt = 0 

in the quarter-space 

Q4: | t | < x, x > 0, - oo < %' < oo, (x' = (x{, xi))y 

1 This research was supported by the Air Force office of Scientific Research. Part 
of the work was done while the author was on a sabbatical leave from Wayne State 
University in 1961-1962. 

2 One of the examples was communicated to the author by F. John. That the 
problem with w(X, 0) = 0 and arbitrary values on C+ may have no solution was pointed 
out by H. Lewy in a discussion. To both of them the author is greatly indebted. 
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bounded by the characteristics C+ and C_ respectively given by x — t 
and x= — t, x>0, — <*> <xf < oo. As the plane of symmetry we have 
the initial (/ = 0) half-space Hz: x > 0 , — oo < x ' < oo. Our main result 
is, in brief, that a solution in Q4 is uniquely determined by its values 
on one of the characteristics, provided the solution satisfies a mild 
regularity condition at infinity on Hz. This result is in contrast to the 
two dimensional theory where values of the solution on both C+ and 
C_, or, on Hz and one of the characteristics, can be prescribed. 

The basic relation between the values of the solutions on C+ (C_) 
and the data on Hz is that given by the Poisson formula. Let 
X= (x, xf), and denote by S M (J; X, p) the spherical mean of/over the 
sphere with center X and radius p. Then for functions which are con­
tinuous in the half-space R3+ (x > 0, — oo < # ' < oo ) and on its boundary 
# = 0, one can form the mean SM*f=SM(f; X, x) in which the x 
coordinate of the center is also the radius of the sphere. A moment 
of reflection will convince the reader that the key question in our 
problem is the following : What is the necessary and sufficient condi­
tion for a function cj> in order that </> = SM*f holds for some ƒ in R% ? 
The analysis of this question and its answer (see Theorem 3) lead to 
the study of the classes ï and f of solutions in Q4, which can be repre­
sented by the weighted parabolic means3 of their boundary values 
on C_. Their values on C+ are then uniquely determined. These solu­
tions have some very interesting properties (see §1). It will be shown 
that a solution which is given by Poisson's formula and is "regular" 
at infinity on JFJ3, belongs to Ï'. From this follows the uniqueness theo­
rem in §2. A well-proposed Goursat problem is given in §3.4 

A number of identities for the iterated spherical and parabolical 
means5 are established in this paper. They are needed for the unique­
ness proof, and they serve as an important tool for inverting the 
operators such as the one given by <j> = SM*f. While the method used 
to establish these identities is the same, the geometry involved is 
different in each case. 

1. The class f of solutions by the parabolic means. 
NOTATIONS. p(X, s) denotes the paraboloid in R% described by 

all the points Y satisfying (y — x)2+ \ y' — xf | 2 = (y+s)2, for any fixed 
3 These are weighted mean values of functions over paraboloids with cylindrical 

symmetry, see §1. 
4 Details of the proofs in this work will be presented elsewhere. 
5 For the identity on iterated spherical means and its applications see [l]. Added 

in proof: Several of the identities used here can be proved simply by observing that 
both sides represent the same solution of the wave equation because of the same 
initial conditions at 5 •= 0. 
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5 restricted to — x<s^x. Let the distance of a point Y to the axis of 
symmetry be r(x, y, s)~V((2y—x+s)(x+s)). The following mean 
value over p(Xt s) is formed: 

PMiS ; X, s) = — — —f f ? (y, *' + r(*, y, * W % 

with b — {x — s)/2, 0' = (cos 0, sin 0). A function f(X) continuous in 
P+, is said to be £-integrable, if the above integral is absolutely con­
vergent for arbitrary (X> s) and for s = — x (when r = 0). We shall 
also denote the above integral in brief by PM8Ç for —x <s <x, specifi­
cally PM°Ç for s = 0, and set PM*Ç = PikT(f; X, x). Furthermore let 
ôf~d(xÇ(X))/dx. Finally we introduce the important operator 
E? = 2PAf*(8f). The following lemma is basic: 

LEMMA 1. Let f E G , f, ôf p-integrable. We have the identity: 

(x + s)PM(EÇ\ X, * ) « ( * - s)PMQ;; X, -*) 

/or -~#<s<x. 

Note the left-hand side is an iterated mean PMS(PM*). The geom­
etry is that the family of paraboloids p(Y} y) with Y varying along 
p(X, s) has p(X, — s) as an envelope. When 5 = 0, Lemma 1 shows in 
particular PM°(EÇ) =PJIf °f. 

LEMMA 2. i ^ f £C2 , f, Sf ató S2f p-integrable. Then £J3f = f. 

For the proof one makes use of Pikf*(Sf) = — SPikf*f to write 

JSf = ( lim (% + s)PM*n. 
dx \ s->x / 

Now replace f by Ef and apply Lemma 1. 
There is an unique decomposition of any f of Lemma 2, ? = # + ^ , 

such that (t> = E(j) and ^ = —Ex//. We shall call 0 the even and ^ the 
odd component of f. f = 0 if and only if <£=^ = 0. 

By a simple calculation one proves 

LEMMA 3. Let Ç be a class G in R3+, such that f and x' -dÇ(X)/dx' 
are p-integrable and that X/'(x+t)PM(Ç; X, t) exists, where V' is the 
Laplacian in (x{, xi). Then the function (x+t)PM(Ç; X, t) is a solu­
tion of the wave equation in Q4. 

DEFINITION 1. Ï consists of all the solutions in Q* given by w(x, t) 
= (x+t)PM(ÔÇ; X, t), where fGC2, f, Of, S2f, x'-dC{X)/dx' and 
x' -d(ôÇ)/dx' are £-integrable, and w(x, t) admits the Laplacian V'. 

It is easily seen that the boundary value of w on C~(t = — x) is given 
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by — x£(X), while its value on C+(t~x) by xEÇ(X). Because of 
Lemma 2, the relationship between the two functions of boundary 
values on CL and C+ is a symmetrical one. 

THEOREM 1. Each element w in t is uniquely determined by its bound­
ary values on one of the two characteristics C+ and CL. To each w there 
are two elements in Ï, u and vy u(X, t) = — u(Xt — /), v(X, t) =v(X, — /)» 
such that w — u+v, and the decomposition is unique. 

For w=(x+t)PM(ÔÇ; X, t) one has u=(x+t)PM(ôcj>\ X, t) and 
v~ (x+t)PM(ô\l/; X, t) where <f> and \f/ are respectively the even and 
odd components of f. 

2. Uniqueness. 
NOTATIONS. The following weighted means are introduced : 

PMk(r, X, s) = 1 f " f 2\y + *)-*?&, x' + r(x, y, S)d')dedy 

for k= 1, 2, with b and r being the same as in §1. Form the operators 

wo?) = w(r, x, o 

= - (* + t) [Pilf2(f ; X, 0 + ~ PMxir, X, *)], 

and 

8(r) = 8(r; X) = lim T7(f ; X, t). 
t-*x 

Denote by h the product x-h(X) of any h(X) with #. 
It is easily verified by differentiation under the integration sign of 

PMi, that ix+t)PM(6Ç; X, t) = W(f; X, t). A solution of the form 
W(Ç) is said to belong to the class f, so that every element in Ï is 
also in Y. However, to form W(Ç), less stringent conditions on the 
integrability of J* are required. We shall not discuss Y here, since our 
interest is concerned with the uniqueness of the solutions in Q4. 

DEFINITION 2. A solution w(X, t) in Q4 is regular if WÇLCI, and on 
Hz (where t = 0) w and its first derivatives wx and wt are continuous 
at x = 0 and are O l ^ - 1 - 6 , €>0, for large \X\. 

THEOREM 2. A regular solution in Q4 is identically zero if it vanishes 
on C+ or on C-. 

Set wt(X, 0) =f(X) and w(X, 0) =g(X). The main task of the proof 
is to write the Poisson formula in terms of W. For this purpose we 
need the following two identities: First, 
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W(xSM*f; X, s) = sSM(f; X, s) for -x < s < x. 

And secondly, denoting 

J(g) = lim-J-<SM(g;X,0, 

^sSM(g;X,s) = -W(I(g);X,s). 
ds 

Suppose we have established these identities, and let us denote for 
the moment xSM*f = a(X) and 1(g) = (3(X), then by passing to the 
limit s—*x we find 

8(a) = a, S(j8) = - 0. 

Now by assumption w vanishes on C+, so a+]8 = 0, hence S(a+j3) 
= a - ft = 0. Consequently a = j8 = 0, W(a) = W(j8) = 0 and w == 0 in Q4. 

To prove the first of the above two identities one writes the iterated 
mean PMi(xSM*f) as an integral over the exterior domain of the 
sphere C(X, \s\) in R3

+, X being the center, \s\ the radius of the 
sphere.6 Differentiation of the integral with respect to s leads to two 
terms, one of which cancels out with the first term involving PM in 
W, the remaining term gives the desired result. The second identity 
is proved by using some of the equations derived in Theorem 3. 

If an assumption is made on the regularity property of the second 
derivatives of w(X, t) in £Z"3, then such a solution will belong to Ï. 
Indeed, if ƒ and g are the same as above, then w = u + v with 
u=(x+t)PM(ÔSM*f; X} t) and v= -(x+t)PM(SM*(Lg); X, t),7 

where the operators L = x"\7%x'+d/dx. 

3. A Goursat problem. A function in R% is said to be belong to 
C\t if it belongs to CJ for x > 0 , continuous at x = 0 and is 0\ Xl""1""6, 
0 < c < l , for large \X\. 

Let fÇzQe- If 0 = 5M*/, then also ^GCJ,.. Form the function 

$(X) = xPM(<i>;X, 0). 

In order to have $ expressed in terms of ƒ, one derives the following 
identity: 

8 C(Xt \s\) is the envelope of the family of spheres C( Y, y) with their centers Y 
varying on the paraboloid p(X, s). When s>0, all such spheres touch C(X, s) from 
the exterior. When s<0, C(X, \ s\ ) is contained in every C(Y, y). When 5 = 0 all the 
spheres pass through the point X. 

» One can verify (d/dx)I(g) = SM*(Lg). 
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xPM(SM*f; X, 0) = — f f(Y)K(x, y, y' - x')dY 

where K= ((y-xY+\y'-x'\ *)-VK(y+xY+\y'-x'\ *)-1/*, and the 
domain of integration is R%. I t then follows that QÇzCl, and with the 
same operator L as given above, Ub — —ƒ. Consequently, Sikf*(L<E>) 

THEOREM 3. The following conditions for <fi are necessary and suffi­
cient in order that <j> = SM*f holds for some fCzC^KfrCzQe, $ G C Î , 
L^GCJe and W($*> X, s)—*±<j> as s—*±x. (The last condition can be 
put in the form £ 0 = 0, if the first derivatives of f and <f> are "regular" at 
infinity.) 

For the proof of Theorem 3 one simplifies the form of the operators 
SM*(L$) and SM(L$; X, s), by showing that, for any <j> and 
<$> = xPM°<t>, 

SM(L$; X,s) = - — [W($\ X, s) - W($; X, -s)] 
2s 

holds. In the process the following identity is used,8 

1 

2 J . 
SM(xPM°<l>; X, s) = — f (x + r)PM(4>', X, r)dr. 

2s J -* 

It is clear that the Goursat problem with w = 0 on Hz and w — $ on 
C+ has a solution if and only if <t> satisfies the conditions given above. 
However, if instead of <j> the function $(X)=xPM(<j>; X, 0) is as­
signed, then the problem is well-proposed. We state 

THEOREM 4. Let g(X) and <£(X) be given in R% such that gGC3 ' 
^ G C L Lg and L<£ both are 0\X\ -1~e at infinity. Then there exists one 
and only one solution w(X, t) in Q4, of class C3, with w = g on Hz, 
PM°$- = $> where $ is the value of w on C+, and wt(X, 0)ECJ«. 
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