RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

A REPRESENTATION THEOREM FOR STATIONARY MARKOV CHAINS

BY D. L. HANSON

Communicated by J. L. Doob, March 18, 1963

Let $\{X_n\}$ be a real-valued strictly stationary stochastic process on the probability space $({}_0\Omega, {}_0\Sigma, {}_0P)$ and let $\{\xi_n\}$ be an independent sequence of random variables uniformly distributed on [0, 1] for $n=0, \pm 1, \cdots$. The emphasis in [1], [2], [3], and [4] has been upon finding a function f such that the sequences $\{X_n\}$ and $\{f(\cdots, \xi_{n-1}, \xi_n)\}$ have the same probability structure (i.e., such that X_{k_1}, \cdots, X_{k_n} and $f(\cdots, \xi_{k_1-1}, \xi_{k_1}), \cdots, f(\cdots, \xi_{k_n-1}, \xi_{k_n})$ have the same joint distribution for all positive integers n and all sequences k_1, \cdots, k_n . The sequence $\{f(\cdots, \xi_{n-1}, \xi_n)\}$ is considered to be just another "representation" of the original process $\{X_n\}$.

The theorem presented here gives a similar type of representation for *all* strictly stationary Markov processes with finite or denumerable state space.

Let ${}_{0}\Sigma_{n}$ be the σ -field of subsets of Ω generated by X_{k} for all $k \leq n$ and let ${}_{0}\Sigma_{-\infty} = \bigcap {}_{0}\Sigma_{n}$. The σ -field ${}_{0}\Sigma_{-\infty}$ is called the tail field of the process $\{X_{n}\}$ and is said to be trivial if it contains only sets of probability zero and one. It has been shown (see [2], [3], and [4]) that if $\{X_{n}\}$ is a strictly stationary Markov process with a finite or denumerable state space then a necessary and sufficient condition for $\{X_{n}\}$ to have a one-sided representation $\{f(\cdots,\xi_{n-1},\xi_{n})\}$ is that $\{X_{n}\}$ be tail trivial.

Let $\{X_n\}$ be a strictly stationary Markov process with finite or denumerable state space. Let ${}_0T$ be the shift transformation induced on $({}_0\Sigma, {}_0P)$ by $\{X_n\}$ in such a way that $\{X_0 \in B\} = T\{X_1 \in B\}$, etc. The following theorem gives a representation for $\{X_n\}$ which depends on its tail field.

THEOREM (PART A). There exists a probability space $({}_{1}\Omega, {}_{1}\Sigma, {}_{1}P, {}_{1}T)$ such that

- (1) $_{1}\Sigma$ is the σ -field of all subsets of $_{1}\Omega$,
- (2) $_{1}P\{u\} > 0$ for each $u \in _{1}\Omega$,

- (3) $_{1}T$ is a measure preserving transformation from $_{1}\Omega$ to $_{1}\Omega$,
- (4) $({}_{1}\Sigma, {}_{1}P, {}_{1}T)$ and the tail field $({}_{0}\Sigma_{-\infty}, {}_{0}P, {}_{0}T)$ of $\{X_{n}\}$ are isomorphic modulo sets of measure zero.

Define the probability space $({}_{2}\Omega, {}_{2}\Sigma, {}_{2}P, {}_{2}T)$ by

- $(1) \ _{2}\Omega = \prod_{i=-\infty}^{\infty} [0, 1] = \{ \xi = (\cdots, \xi_{-1}, \xi_{0}, \xi_{1}, \cdots) | \xi_{i} \in [0, 1] \},$
- (2) ${}_{2}\Sigma$ is the smallest σ -field of subsets of ${}_{2}\Omega$ with respect to which each coordinate projection ξ_{i} is Borel measurable,
 - (3) ₂P is product Lebesgue measure,
 - (4) $_{2}T\xi = (\cdot \cdot \cdot, \xi_{0}, \xi_{1}, \xi_{2}, \cdot \cdot \cdot).$

Define $(\Omega, \Sigma, P, T) = ({}_{1}\Omega, {}_{1}\Sigma, {}_{1}P, {}_{1}T) \times ({}_{2}\Omega, {}_{2}\Sigma, {}_{2}P, {}_{2}T)$ and let Σ_{0} be the smallest σ -field of subsets of Ω with respect to which the coordinate projections u and ξ_{i} for all $i \leq 0$ are Borel measurable.

THEOREM (PART B). There exists a function f measurable with respect to Σ_0 such that $\{f(T^n\xi)\}$ is a representation of $\{X_n\}$.

Detailed proofs will appear elsewhere.

BIBLIOGRAPHY

- 1. J. R. Blum and D. L. Hanson, On the representation problem for stationary stochastic processes with trivial tail field, University of New Mexico Tech. Rept. No. 29, March 1963.
- 2. D. L. Hanson, On the representation problem for stationary stochastic processes with trivial tail field, J. Math. Mech. 12 (1963), 293-301.
- 3. M. Rosenblatt, Stationary processes as shifts of functions of independent random variables, J. Math. Mech. 8 (1959), 665-681.
- 4. ——, Stationary Markov chains and independent random variables, J. Math. Mech. 9 (1960), 945-949.

SANDIA CORPORATION