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Let {Xn} be a real-valued strictly stationary stochastic process on 
the probability space (oQ, oS, oP) and let {£»} be an independent 
sequence of random variables uniformly distributed on [0, l ] for 
» = 0, ± 1 , • • • . The emphasis in [ l ] , [2], [3], and [4] has been upon 
finding a function ƒ such that the sequences {Xn} and 
{ƒ ( • •*> %n-u £n)} have the same probability structure (i.e., such 
that Xk]it • • • , Xkn and ƒ ( • • • , &1-1» &i)> " • • i ƒ( " ' • » &»-i> &J 
have the same joint distribution for all positive integers n and all 
sequences ki, • • • , kn). The sequence { ƒ ( • • • , fn-i, &»)} is considered 
to be just another "representation" of the original process {Xn}. 

The theorem presented here gives a similar type of representation 
for all strictly stationary Markov processes with finite or denumer-
able state space. 

Let oSn be the <r-field of subsets of £2 generated by Xk for all k^n 
and let oS-* = fl o2n. The (7-field oS-*, is called the tail field of the 
process {Xn} and is said to be trivial if it contains only sets of 
probability zero and one. I t has been shown (see [2], [3], and [4]) 
that if {Xn} is a strictly stationary Markov process with a finite or 
denumerable state space then a necessary and sufficient condition for 
\Xn\ to have a one-sided representation { ƒ ( • • • , £n-i, £»)} is that 
\Xn) be tail trivial. 

Let {Xn} be a strictly stationary Markov process with finite or 
denumerable state space. Let QT be the shift transformation induced 
on (oS, oP) by {Xn} in such a way that {XQEB} = T{X1ÇLB), etc. 
The following theorem gives a representation for {Xn} which de­
pends on its tail field. 

THEOREM (PART A). There exists a probability space (iQ, iS, XP, i!T) 
such that 

(1) iS is the <r-field of all subsets of ifl, 
(2) iP{u} >0 for each uE\Q, 
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(3) iT is a measure preserving transformation from i£2 to iQ, 
(4) (iS, iP, xT) and the tail field (oS_oo, 0P, oP) of {Xn} are iso­

morphic modulo sets of measure zero. 

Define the probability space GO, 2S, 2P, 2P) by 
(1) 20==nr=-oo [0 ,1 ] - {£=( • • •, £-1, go, & • • • )|&e[o, 1]}, 
(2) 22J is the smallest c-field of subsets of 2Œ with respect to which 

each coordinate projection £»• is Borel measurable, 
(3) 2P is product Lebesgue measure, 
(4) , r $ = ( - • •,€<>, &,&, • • • ) • 
Define (0, 2 , P , T) = (ifl, iS, iP, iP) X(2fl, *S, 2P, 2P) and let S0 be 

the smallest <r-field of subsets of Q with respect to which the co­
ordinate projections u and £* for all i^O are Borel measurable. 

THEOREM (PART B). There exists a function f measurable with re-
sped to So such that {f(Tn^)} is a representation of {Xn}. 

Detailed proofs will appear elsewhere. 
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