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The decomposition of a continuous parameter supermartingale into 
the difference of a martingale and a process with increasing sample 
functions has been studied by Meyer [ l ] . Meyer has shown that a 
non-negative uniformly integrable right-continuous (i.e., right-con­
tinuous sample functions) supermartingale {;y«: O â £ â + °° } with 
lim ̂ oo yt = 0 can be decomposed in this manner if and only if the 
supermartingale is of class D o n [0, oo ]. Such a supermartingale is of 
class D on [0, oo ] if the family of random variables {yTi T G S } , 
where 3 is the class of stopping times for the process, is uniformly 
integrable. Although Meyer has given some sufficient conditions 
under which a supermartingale is of class D o n [0, oo ], the existence 
of supermartingales which are uniformly integrable but not of class 
D o n [0, oo ] has not been settled. An example of a uniformly integra­
ble supermartingale which is not of class D on [0, oo ] is given below. 
A necessary and sufficient condition for a supermartingale to be of 
class D o n [0, oo ] is proven under the additional hypothesis that al­
most all sample functions of the process are continuous. This condi­
tion does not involve stopping times. 

Let (Q, JF, P) denote a probability measure space. Points of Q will 
be denoted by co. If {yt, Ft:0^t^°o} is a supermartingale, a stop­
ping time is a non-negative random variable T, which may take on 
the value + oo, such that {co: T(co) < /} £Ft for every t. The class of 
such stopping times will be denoted by 3 . I t is well known that SAT, 
the infimum of the two stopping times S and T, is a stopping time. 

THEOREM. Let {yt, Ft: O^t^ oo } be a non-negative right-continuous 
supermartingale. If the family {yr: r £ 3 > } is uniformly integrable, 
then lining nP[supoût$oo yt>n] = 0. The converse holds if the super-
martingale has sample f unctions which are continuous with probability 1. 

PROOF. Let y^^supo^t^yt and let rn(co)?=inf {t: yt(o>) ^n) (the 
infimum of the empty set is defined to be + 0 0 ) . Then J T „ £ 3 for 
each positive integer n. For any w^J , 

f yrndP à f yrndP ê nP\yT% è w ] à nP[y* > n]. 
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This inequality along with the uniform integrability of the sequence 
{yrn} implies that lim^,» nP\y*>n\ = 0. To prove the converse, 
suppose the supermartingale has sample functions which are con­
tinuous with probability 1 and linv**, nP[y*>n]~0. Let 5 be any 
stopping time in 3 . Using the right-continuity of the supermartin-
gale, it is easily seen that the ^«-process is a supermartingale relative 
to the enlarged system of Borel fields Ff = [)8>t F6. All stopping times 
in 3 are strict stopping times relative to this enlarged system of Borel 
fields; i.e., if T G 3 , then {o>: T(<a) ût}Ç.F? for all t. Since S/\TnèSy 

the two random variables ys^Tn and y s constitute a supermartingale 
relative to the enlarged system of Borel fields ([2, p. 373] and, es­
pecially, the note on p. 379). Using the supermartingale inequality 

I ysATndP à I ysdP for every « ^ 1. 

Using this inequality, the equation 

1 ysArndP = I ysATndP 
J vs A ;rn>»-i J y s A rn>«-ü s<rn 

+ I ysATndP, 
v lia A m "">«.—1:S> T_ VSATn>n-^s^Tn 

and the fact that S(œ) < Tn(o)) implies 3>sA5P„(W)(co) <n, 

I y&dP gj nP[ysATn > n — 1] + I yrndP 

for every n ^ 1. 

The set appearing in the integral on the left side of this inequality 
can be replaced by {œ: ys(œ)(oo)>n — l}. To see this, note that 
y si») (w) > n — 1 implies ysATn^) (o>) > n — 1 if 5(co) â Tn(co) ; on the 
other hand, if Tn(co) <S(o)) ^ + oo, then the sample function corre­
sponding to co must a t some time exceed n and yz»n<«)(w) ^ w > w - 1 . 
Moreover, since ysArn<«)(<o) > # — 1 implies y*(co) > # — 1, the first term 
on the right side can be replaced by n P [ y * > # — l ] . In addition, the 
integral on the right side can be written as a sum of three integrals 
depending on whether Tn = 0, 0 < Tn < + oo, or Tn = + oo. Thus, 

J ysdP g nP[y* > n - l] + f y0dP 

+ f 3>2V*P + f J ^ P 
yy >n- l ;0<r n <+oo ^ l ^ n - l 
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for n è 1 and any stopping time S. Since almost all sample functions 
are continuous, 0 < Tn(o)) < + 00 implies that ^rn(w)(w) = n with proba­
bility 1. Thus, 

f ysdP g 2nP\y* > n - l] + f y0dP + f y„dP 

for any n ^ 1 and any stopping time 5. Since the right side of this in­
equality approaches zero as n approaches infinity and does not in­
volve stopping times, 

lim I ysdP = 0 uniformly for S £ 3» 
n-><» J ys>n 

This concludes the proof that the family {yr: T G 3 } is uniformly 
integrable. 

I t is interesting to note that the uniform integrability of a non-
negative continuous supermartingale {yt, Ft:0St^ + <x> } is a con­
sequence of the condition of the theorem imposed on the supremum 
of the process. I t is evident from the above proof that the condition 
of the theorem is also sufficient without the continuity assumption 
if the sequence {yrn} is uniformly integrable. 

The following example shows that , in general, it is not possible to 
decompose a uniformly integrable continuous parameter supermartin-
gale into a martingale and a process with increasing sample functions 
[2, p. 353]. Consider a Brownian motion process {xt: 0^t< + 00 } in 
the three-dimensional Euclidean space starting from the point 
po = (1, 0, 0) with associated probability measure P. The sample func­
tions of such a process approach the point a t infinity with probability 
1 and are continuous with probability 1. Consider also the superhar-
monic function u(p) = l/r where r = ||/>|| is the distance from p to 9 
= (0, 0, 0). Then u(xt) is a supermartingale with sample functions 
which are continuous with probability 1 [3]. Moreover, lim^*, u(xt) 
= 0 with probability 1. Let yt = u(xt), 0 ^ < + oo, and let ôo = 0. The 
process {;y*: 0 : g ^ + 00 } is a supermartingale. This process is also 
uniformly integrable. To prove this it suffices to show that E[yt\ is 
a continuous function on [O, 00 ] [2, p. 359]. This condition is satisfied 
since E[y0] = E[u(xo)]=u(po) = 1, Ely*] = 0, and with the aid of 
an integral from potential theory [4, p. 82] 

E[yt] = — [ f r*f*l**dr + te"1'2*] 

for 0 < * < + oo. 
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It will now be shown that the family of random variables 
{yr: JTG3»} is not uniformly integrable. For each a G ( 0 , 1), let Ta 

denote the first time that the ;yrprocess hits the interval [ l / a , +00) 
whenever the process hits the interval. Ta is defined to be +00 
whenever the process does not hit the interval [ l / a , +00) . Equiva-
lently, Ta is either the first time the x rprocess hits the closed ball 
J3(0, a) = {p: \\p\\ g a } or +00 depending upon whether or not the 
process hits B(0, a ) . Consider the family of random variables 
{yTa : 0 <a < 1} . Suppose £ > 0 and l / a > £. Then 

I yradP = (l/a)P[x rprocess hits "B(d, a)]. 

The probability on the right can be evaluated using harmonic meas­
ure [5], Let v(p) be the function which is 1 on {p: \\p\\ = a } , zero at 
infinity, and harmonic for a < | | ^ | | . Then v(po) is just the probability 
that a Brownian path starting from pQ will hit ~B(d, a) before hitting 
the point a t infinity. Since v(p) = a/\\p\\ for ||^|| > a , P[# rprocess hits 
B(d, a ) ] = z ; ( ^ 0 ) = a / | | ^ 0 | | = a a n d 

I yradP = 1 whenever l/a > £. 
JVTa>t 

This proves that the family {yTa' 0 < a < l } is not uniformly integra­
ble. Since this family is contained in the family of random variables 
{yr'. r £ 3 } , the latter family is not uniformly integrable. The above 
computation shows that the condition of the theorem is not satisfied. 
In fact, the probability that a Brownian path will hit the ball JS(0, a) 
is just the probability that the supremum of the ^rprocess will exceed 
l / a . The computation shows tha t ( l / a ) P [ ; y * è l / a ] = l. 
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