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The decomposition of a continuous parameter supermartingale into
the difference of a martingale and a process with increasing sample
functions has been studied by Meyer [1]. Meyer has shown that a
non-negative uniformly integrable right-continuous (i.e., right-con-
tinuous sample functions) supermartingale {y;:0=t<+ w} with
lim;,, ¥;=0 can be decomposed in this manner if and only if the
supermartingale is of class D on [0, « ]. Such a supermartingale is of
class D on [0, »] if the family of random variables {yT: resl,
where & is the class of stopping times for the process, is uniformly
integrable. Although Meyer has given some sufficient conditions
under which a supermartingale is of class D on [0, « ], the existence
of supermartingales which are uniformly integrable but not of class
D on [0, « ] has not been settled. An example of a uniformly integra-
ble supermartingale which is not of class D on [0, « ] is given below.
A necessary and sufficient condition for a supermartingale to be of
class D on [0, » ] is proven under the additional hypothesis that al-
most all sample functions of the process are continuous. This condi-
tion does not involve stopping times.

Let (Q, F, P) denote a probability measure space. Points of Q2 will
be denoted by w. If {y:, F,: 0St=<} is a supermartingale, a stop-
ping time is a non-negative random variable T, which may take on
the value + «, such that {w: T'(w) <t} EF; for every t. The class of
such stopping times will be denoted by J. It is well known that SAT,
the infimum of the two stopping times S and T, is a stopping time.

THEOREM. Let {y,, Fi: 0St=< w } be a non-negative right-continuous
supermartingale. If the family {yr: TES} is uniformly integrable,
then limy,., nP[suposise ¥:>n]=0. The converse holds if the super-
martingale has sample functions which are continuous with probability 1.

PrOOF. Let y*=supogise y: and let T,,(w)=inf{t: y;(w)gn} (the
infimum of the empty set is defined to be + «). Then T,ES for
each positive integer #. For any n 2§,

f yr,dP 2 f yr,dP = nP[yr, = n] = nP[y* > n].
vr, 2§

Yp,&n
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This inequality along with the uniform integrability of the sequence
{yr,} implies that lim,., #P[y*>n]=0. To prove the converse,
suppose the supermartingale has sample functions which are con-
tinuous with probability 1 and lim,.., #P[y*>n]=0. Let S be any
stopping time in §. Using the right-continuity of the supermartin-
gale, it is easily seen that the y,-process is a supermartingale relative
to the enlarged system of Borel fields F;" =M, F,. All stopping times
in & are strict stopping times relative to this enlarged system of Borel
fields; i.e., if TES, then {w: T(w) ét} € Ff for all ¢. Since SAT.<.S,
the two random variables ysAr, and ys constitute a supermartingale
relative to the enlarged system of Borel fields ([2, p. 373] and, es-
pecially, the note on p. 379). Using the supermartingale inequality

J

ysAr,dP = f ysdP  for every n = 1.
YSA Tﬂ>n-—1

VY3A P, >n—1

Using this inequality, the equation

f YsA T,,dP = YsA T”dP

YSAT,>7—1 YSA 7, >n—1;8<Ty

+ f ysAr,dP,

YSAT,>n—1;82 Ty

and the fact that S(w) < T, (w) implies ysar,w (@) <,

f ysdP £ nPlysar, > n — 1] + yr.dP
”SAT..>”—1

vy, >n—1
for every n = 1.

The set appearing in the integral on the left side of this inequality
can be replaced by {w:ysw(w)>n—1 } To see this, note that
Ysw(@)>n—1 implies Ysar,w(@)>n—1 if S(w)=T.(w); on the
other hand, if T,(w)<S(w)= -+ », then the sample function corre-
sponding to w must at some time exceed # and yr, w(w) =n>n—1.
Moreover, since ysar,w (@) >n—1 implies y*(w) >n—1, the first term
on the right side can be replaced by nP[y*>n—1]. In addition, the
integral on the right side can be written as a sum of three integrals
depending on whether T3,=0, 0< 7, <+ «, or T,,= 4, Thus,

f ysdP < nP[y* >n — 1]+ YodP
yg>n—1

yo>n—1

+ yr,dP + YdP
yp >n—1;0<Tp<+w Yo>n—1
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for n=1 and any stopping time S. Since almost all sample functions
are continuous, 0 < T',(w) < + » implies that yr, @) (w) =7 with proba-
bility 1. Thus,

f ysdP < 2nP[y* > n — 1] + ydP + Yl P
yg>n—1 yo>n—1 Vo> n—1
for any =1 and any stopping time S. Since the right side of this in-
equality approaches zero as n approaches infinity and does not in-
volve stopping times,

lim ysdP = 0 uniformly for S € &.

n—® yg>n
This concludes the proof that the family {yT: TES‘} is uniformly
integrable.

It is interesting to note that the uniform integrability of a non-
negative continuous supermartingale {y,, Fp0st=s+4 o } is a con-
sequence of the condition of the theorem imposed on the supremum
of the process. It is evident from the above proof that the condition
of the theorem is also sufficient without the continuity assumption
if the sequence {yr,} is uniformly integrable.

The following example shows that, in general, it is not possible to
decompose a uniformly integrable continuous parameter supermartin-
gale into a martingale and a process with increasing sample functions
[2, p. 353]. Consider a Brownian motion process {#:;: 0<¢t<+ o } in
the three-dimensional Euclidean space starting from the point
po=(1, 0, 0) with associated probability measure P. The sample func-
tions of such a process approach the point at infinity with probability
1 and are continuous with probability 1. Consider also the superhar-
monic function u(p)=1/r where r=||p[| is the distance from p to 0
=(0, 0, 0). Then u(x;) is a supermartingale with sample functions
which are continuous with probability 1 [3]. Moreover, lim,.., u(x:)
=0 with probability 1. Let y,=u(x:), 0=t <+ », and let y,=0. The
process {y;:0St<+w } is a supermartingale. This process is also
uniformly integrable. To prove this it suffices to show that E[y] is
a continuous function on [0, « ] [2, p. 359]. This condition is satisfied
since E[yo]=E[u(xo)]=u(ps)=1, E[y.]=0, and with the aid of
an integral from potential theory [4, p. 82]

4r ! .
Ely] = —————I:f rie=r"12dr - te‘1/2‘:|
0

(2mt)8i2
for 0<i< 4.



62 GUY JOHNSON AND L. L. HELMS

It will now be shown that the family of random wvariables
{yT: TGS} is not uniformly integrable. For each o & (0, 1), let T,
denote the first time that the y,-process hits the interval [1/a, 4+ @)
whenever the process hits the interval. T, is defined to be 4+«
whenever the process does not hit the interval [1/a, + ). Equiva-
lently, T, is either the first time the x,-process hits the closed ball
B@, o)={p: Hp“ <a} or + = depending upon whether or not the
process hits B(f, «). Consider the family of random variables
{¥r,: 0<a<1}. Suppose £>0 and 1/a>£. Then

f yrdP = (1/a) P[x,-process hits B(8, a)].
vy >

The probability on the right can be evaluated using harmonic meas-
ure [5]. Let v(p) be the function which is 1 on {p:||p|| =a}, zero at
infinity, and harmonic for a<[|p[|. Then v(po) is just the probability
that a Brownian path starting from p, will hit B(f, «) before hitting
the point at infinity. Since () =a/|lp” for Hp” >a, P[x,-process hits
B0, a)1=v(po) =a/||pol| = and

f yr,dP =1 whenever 1/a > &
yr >k

This proves that the family { yr,: 0<a<1 } is not uniformly integra-
ble. Since this family is contained in the family of random variables
{yr: TESY}, the latter family is not uniformly integrable. The above
computation shows that the condition of the theorem is not satisfied.
In fact, the probability that a Brownian path will hit the ball B(f, a)
is just the probability that the supremum of the y,-process will exceed
1/a. The computation shows that (1/a)P[y*=1/a]=1.
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