SOME L^p ESTIMATES FOR PARTIAL DIFFERENTIAL EQUATIONS¹

BY MARTIN SCHECHTER

Communicated by Lipman Bers, April 9, 1962

1. **Introduction.** In this note we describe sufficient conditions for inequalities of the form

(1.1)
$$||u||_{s,p} \leq \text{const.}\left(\sum_{k} ||A_{k}u||_{s_{k},p} + ||u||_{0,p}\right)$$

to hold for functions u satisfying given (possibly void) boundary conditions, where the A_k are linear partial differential operators, p is greater than one, and $\|\cdot\|_{s,p}$ is an L^p norm defined for all real values of s. When s is a non-negative integer, $\|u\|_{s,p}$ is essentially the sum of the L^p norms of u and all its derivatives up to order s.

We do not require that the A_k be of the same order or that s be greater than their maximum order. When s is an integer we also obtain inequalities of the form

(1.2)
$$||u||_{s,p} \leq \text{const.} \left(\sum_{k} ||A_k u||_{s_k,p} + \sum_{i} \langle B_i u \rangle_{t_i,p} + ||u||_{0,p} \right)$$

holding for all functions u, where the B_i are boundary operators and the $\langle \cdot \rangle_{t,p}$ are appropriate boundary norms.

In the case of one operator A_1 we are able to obtain slightly stronger results (cf. §4).

We also consider corresponding inequalities for general bilinear integro-differential forms (cf. §5). If [u, v] is such a form of order m, we give sufficient conditions for

$$||u||_{s,p} \leq \text{const.} \left(\sup_{v} \frac{|[u,v]|}{||v||_{2m-s,p'}} + \sum_{j} \langle B_{j}u \rangle_{t_{j},p} + ||u||_{0,p} \right)$$

to hold for all u. This generalizes the concept of L^2 coerciveness for such forms.

2. Complex interpolation spaces. Let X_0 and X_1 be Banach spaces and denote by $H(X_0, X_1)$ the set of functions f(x+iy) having values in X_0+X_1 which are analytic in 0 < x < 1, continuous and bounded in $0 \le x \le 1$, and such that $f(iy) \in X_0$, $f(1+iy) \in X_1$. Set

¹ This paper represents results obtained under contract AT(30-1)-1480 with the U. S. Atomic Energy Commission.

$$||f||_{H(X_0,X_1)} = \max_{\nu} ||\sup_{\nu} ||f(iy)||_{X_0}, \quad |\sup_{\nu} ||f(1+iy)||_{X_1}|.$$

For $0 \le \theta \le 1$, the set $[X_0, X_1; \delta(\theta)]$ consists of those elements of $X_0 + X_1$ which are equal to $f(\theta)$ for some $f \in H(X_0, X_1)$. Under the norm

$$||u||_{[X_0,X_1;\delta(\theta)]} = \underset{f(\theta)=u}{\operatorname{glb}} ||f||_{H(X_0,X_1)},$$

the set $[X_0, X_1; \delta(\theta)]$ becomes a Banach space. This method of interpolation was introduced by Calderón [3] and Lions [4].

3. Inequalities for formally positive forms. Let G be a bounded domain in Euclidean n-space E^n with boundary ∂G of class C^{∞} . Let $C^{\infty}(\overline{G})$ denote the set of complex valued functions infinitely differentiable in the closure \overline{G} of G. For i a non-negative integer and p>1 we employ the norm

(3.1)
$$||u||_{i,p} = \left(\sum_{|u| \le i} \int_{G} |D^{\mu}u|^{p} dx\right)^{1/p}$$

where summation is taken over all derivatives $D^{\mu}u$ of order $|\mu| \leq i$. We let $H^{i,p}(G)$ denote the completion of $C^{\infty}(\overline{G})$ with respect to the norm (3.1). For any real number s such that i < s < i+1 we define $H^{s,p}(G)$ to be the space $[H^{i,p}(G), H^{i+1,p}(G); \delta(\theta)]$, where $\theta = s - i$. For s real and negative $H^{s,p}(G)$ is defined as the completion of $C^{\infty}(\overline{G})$ with respect to the norm,

$$||u||_{s,p} = \lim_{v \in C^{\infty}(\bar{G})} \frac{|(u,v)|}{||v||_{-s,p'}},$$

where $(u, v) = \int_G u \bar{v} dx$ and p' = p/(p-1).

We consider the following boundary norms. For $\phi \in C^{\infty}(\partial G)$ and s real and positive we define

$$\langle \phi \rangle_{s,p} = \text{glb} \| u \|_{s+1/p,p},$$

where the glb is taken over all $u \in C^{\infty}(\overline{G})$ which equal ϕ on ∂G . For s negative, we write

(3.2)
$$\langle \phi \rangle_{s,p} = \text{lub} \left| \int_{\partial G} \phi \bar{\psi} d\sigma \right| \langle \psi \rangle_{-s,p'}^{-1},$$

where the lub is taken over all $\psi \in C^{\infty}(\partial G)$.

Let $\{A_k\}$ and $\{B_j\}$ be two finite systems of linear partial differential operators with coefficients in $C^{\infty}(\overline{G})$. The set $\{B_j\}$ may be void. Let m_k denote the order of A_k and ν_j the order of B_j . Set $m = \max m_k$

and $\nu = \max \nu_j$. We make the following assumptions:

- (a) The orders of the B_i are distinct, and $\nu < m$.
- (b) The boundary ∂G is noncharacteristic to each B_i at every point.
- (c) At each point $x \in \overline{G}$ the characteristic polynomials $P_k(x, \xi)$ of the A_k do not vanish simultaneously for any real vector $\xi \neq 0$.
- (d) The B_j cover the A_k . This means the following. At each point x^0 of ∂G let $N\neq 0$ be a vector orthogonal to ∂G at x^0 and $T\neq 0$ a tangential vector. Let z_1, \dots, z_h denote the complex roots with positive imaginary parts common to the polynomials $P_k(z) \equiv P_k(x^0, T+zN)$. If $Q_j(x, \xi)$ denotes the characteristic polynomial of B_j , then it is assumed that there are h polynomials among the $Q_j(z) \equiv Q_j(x^0, T+zN)$ which are linearly independent modulo the polynomial

$$(z-z_1)(z-z_2)\cdot\cdot\cdot(z-z_h).$$

If the set $\{B_j\}$ is empty, it is assumed that there are no such roots z_i .

(e) At each boundary point x^0 , ∂G is noncharacteristic for some operator A_k of order m.

THEOREM 3.1. Assume that the systems $\{A_k\}$, $\{B_j\}$ satisfy hypotheses (a)-(e). Then for each integer s and each set of real numbers $s_k \ge s - m_k$, $t_j \ge s - \nu_j - 1/p$ there is a constant C such that

(3.3)
$$||u||_{s,p} \leq C \left(\sum_{k} ||A_{k}u||_{s_{k},p} + \sum_{j} \langle B_{j}u \rangle_{t_{j},p} + ||u||_{s-m,p} \right)$$

for all $u \in C^{\infty}(\overline{G})$.

COROLLARY 3.1. If $s \ge m$, then hypothesis (e) is unnecessary in Theorem 3.1.

THEOREM 3.2. Under hypotheses (a)-(e), for every set of real $s \le m$ and $s_k \ge s - m_k$ there is a constant C such that

(3.4)
$$||u||_{s,p} \leq C \left(\sum_{k} ||A_{k}u||_{s_{k},p} + ||u||_{s-m,p} \right)$$

for all $u \in C^{\infty}(\overline{G})$ satisfying

$$(3.5) B_j u = 0 on \partial G for each j.$$

Let m_0 be the minimum order of the A_k . Then an important special case of Theorem 3.2 is

COROLLARY 3.2. Under hypotheses (a)-(e),

$$||u||_{m_0,p} \le C \left(\sum_k ||A_k u||_{0,p} + ||u||_{0,p} \right)$$

for all $u \in C^{\infty}(\overline{G})$ satisfying (3.5).

REMARK 3.1. For s an integer and $\geq m$, inequality (3.4) was first proved by Agmon (to appear). When the set $\{B_j\}$ is void, Smith [7] obtained the same result under stronger hypotheses on the A_k and weaker hypotheses on ∂G .

4. A stronger result for one operator. Assume that A is an elliptic operator of even order 2q with coefficients in $C^{\infty}(\overline{G})$. Let $\{B_j\}_{j=1}^q$ be a set of boundary operators satisfying hypotheses (a) and (b) of §3 (with m=2q) and having coefficients in $C^{\infty}(\partial G)$. If A' is the formal adjoint of A, let V' be the set of those $v \in C^{\infty}(\overline{G})$ such that (u, A'v) = (Au, v) for all $u \in C^{\infty}(\overline{G})$ satisfying

$$(4.1) B_j u = 0 on \partial G, 1 \le j \le q.$$

For a real s we define the norm

$$|w|'_{s,p} = \underset{v \in V'}{\operatorname{lub}} \frac{|(w,v)|}{||v||_{-s,p'}}$$

When $s \ge 0$ this is equivalent to the norm $||w||_{s,p}$, but not otherwise.

THEOREM 4.1. If the set $\{B_j\}_{j=1}^q$ covers A, then for every real A there is a constant M_s such that

$$||u||_{s,p} \leq M_s(|Au|'_{s-2q,p} + ||u||_{s-2q,p})$$

for all u satisfying (4.1).

Theorem 4.2. Under the same hypothesis, for each integer s there is a constant M'_s such that

$$(4.3) ||u||_{s,p} \leq M'_{s} \left(|Au|'_{s-2q,p} + \sum_{j=1}^{q} \langle B_{j}u \rangle_{s-\nu_{j-1}/p,p} + ||u||_{s-2q,p} \right)$$

for all $u \in C^{\infty}(\overline{G})$. Moreover, the same is true for all real $s \ge \nu + 1$.

REMARK. For the Dirichlet problem special cases of Theorem 4.1 and 4.2 were proved by Agmon [2] and Lions-Magenes [5]. For p=2 and general B_j the last statement of Theorem 4.2 is included in the work of Peetre [6].

5. Bilinear forms. We consider bilinear integro-differential forms of order m:

$$[u, v] = \int_{G} \sum_{|\mu|, |\tau| \le m} a_{\mu\tau} D^{\mu} u [D^{\tau} v]^{-} dx,$$

² Cf. hypothesis (d) of §3. In the present case there is only one operator in the set $\{A_k\}$.

where the coefficients $a_{\mu\tau}$ are in $C^{\infty}(\overline{G})$. Let $\langle B_j \rangle_{j=1}^r$ be a set of boundary operators satisfying hypotheses (a) and (b) of §3, and let V denote the set of those $u \in C^{\infty}(\overline{G})$ satisfying

$$(5.1) B_j u = 0 on \partial G, 1 \le j \le r.$$

We say that the form [u, v] is coercive over V if

$$||u||_{m,2}^2 \le \text{const.}(\text{Re}[u, u] + ||u||_{0,2}^2)$$

for all $u \in V$. We have

Theorem 5.1. If [u, v] is coercive over V, then for each real $s \leq m$

(5.2)
$$||u||_{s,p} \le \text{const.}([u]_{s-m,p} + ||u||_{s-m,p})$$

for all $u \in V$, where

$$[u]_{s-m,p} = \lim_{v \in V} \frac{|[u,v]|}{||v||_{2m-s,p'}}.$$

Moreover, for each integer s

(5.3)
$$||u||_{s,p} \le \text{const.} \left([u]_{s-m,p} + \sum_{j=1}^r \langle B_j \rangle_{s-\nu_j-1/p,p} + ||u||_{s-m,p} \right)$$

for all $u \in C^{\infty}(\overline{G})$.

Agmon [1] has given necessary and sufficient conditions for [u, v] to be coercive over V. They are similar in nature to hypotheses (c) and (d) of §3. Hence we have obtained sufficient conditions for inequalities (5.2) and (5.3) to hold.

REFERENCES

- 1. Shmuel Agmon, The coerciveness problem for integro-differential forms, J. Analyse Math. 6 (1958), 183-223.
- 2. , The L_p approach to the Dirichlet Problem. I, Ann. Scuola Norm. Sup. Pisa Ser. (3) 13 (1959), 405-448.
- 3. A. P. Calderón, *Intermediate spaces and interpolation*, Conference at Warsaw, 1960.
- 4. J. L. Lions, Une construction d'espaces d'interpolation, C. R. Acad. Sci. Paris 250 (1960), 1853-1855.
- 5. J. L. Lions and Enrico Magenes, Problemi ai limiti non omogenei. III, Ann. Scuola Norm. Sup. Pisa Ser. (3) 15 (1961), 41-103.
- 6. Jaak Peetre, Another approach to elliptic boundary value problems, Comm. Pure Appl. Math. 14 (1961), 711-731.
- 7. K. T. Smith, Inequalities for formally positive integro-differential forms, Bull. Amer. Math. Soc. 67 (1961), 368-370.

New York University