HOMOMORPHISMS AND IDEMPOTENTS OF
GROUP ALGEBRAS

BY PAUL J. COHEN
Communicated by Walter Rudin, January 14, 1959

Let G be a locally compact abelian group. We denote by M(G)
the algebra of all finite complex-valued Borel measures on G. The
algebra is normed by assigning to each measure its total variation,
and the product or convolution of the measures u and » is defined by

wer® = [ [ @),

If a particular Haar measure is chosen on G, the subalgebra of ab-
solutely continuous measures may be identified with L(G), the alge-
bra of absolutely integrable functions. The Fourier transform of a

measure u is a function g defined on G, the dual group of G, by the
formula

2k = f G0, )due),

where (x, g) denotes x evaluated at g. Each x thus yields a homo-
morphism of M(G) onto the complex numbers. Every such homo-
morphism of L(G) is obtained in this way.

Let ¢ be a homomorphism of L(G) into M(H). After composing
with ¢, every homomorphism of M(H) onto the complex numbers
either is identically zero, or can be identified with a member of G.
We thus have a map ¢« from H into {é, 0 }, the union of G and the
symbol 0, the latter to be considered as the point at infinity. Our
main result is:

THEOREM 1. For every homomorphism ¢ of L(G) into M(H), there
exist a finite number of cosets of open subgroups of H, which we denote
by K;, and continuous maps y.: K,—G, such that

Vile + y — 2) = ¢u(x) + ¥i(y) — ¥:(3),

with the following property: there is a decomposition of H into the dis-
joint union of sets Sj, each lying in the Boolean ring generated by the
sets K;, such that on each S;, ¢« is either identically zero or agrees with
some Y, where S;CK,.

Conversely, for any such map of H into {G, 0}, there is a homo-
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morphism of L(G) into M(H) which induces it. The map carries L(G)
into L(H) if and only if ¢35 of every compact subset of G is compact.

The main tool in the proof of Theorem 1 is the following lemma:

LemMA. If G and H are compact, then the graph of ¢, namely all
pairs (px(h), k) where ¢ps(h) is not zero, is such that its characteristic
Sfunction is the Fourier transform of a measure on GXH.

The measure in the lemma must of course be an idempotent, that
is, satisfy the equation u * u=u. The essential difficulty rests in the
determination of all idempotent measures on a group.

THEOREM 2. If u is an idempotent measure, then f is the character-
istic function of a subset E of G which lies in the Boolean ring generated
by cosets of open subgroups of G.

It is not difficult to deduce Theorem 1 from the above statements
in the case in which G and H are compact. In the general case one
shows that there is a natural extension of ¢ to a homomorphism of
L(G) into M(H) where G and H are the Bohr compactifications of
G and H respectively. It can then be shown that if G and H are taken
in the discrete topology, Theorem 1 holds. However we know that
¢x is continuous and after some manipulation we can show that
Theorem 1 holds in the original form.

Both Theorems 1 and 2 were known in special cases before. We
note that Theorem 2 implies that the support of an idempotent
measure is contained in a compact subgroup. Conversely, it is simple
to reduce Theorem 2 to the case where G is compact. If u is abso-
lutely continuous then it clearly is a finite sum of characters multi-
plied by Haar measure. The difficulty in general lies in analyzing the
singular part of u. Here the main point is to show that u has mass on
a closed subgroup of infinite index. In the case that G has no elements
of finite order, this statement is equivalent to saying that the set E
intersects some cyclic subgroup of G in an infinite set. For arbitrary
G it is proved by more complicated means. In either case one needs
a technique which will yield some restriction on the nature of the
set E. It is of course true that E can be an arbitrary finite set. Hence
we can only hope to derive statements about the set E which allow
for a finite number of exceptions. Nevertheless, our technique yields
statements concerning finite sums of characters. These we state for
the circle group.

THEOREM 3. For some K, whenever c; are such that Ic,-l =1, and n;
are arbitrary distinct integers, we have
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It is a conjecture of Littlewood that the inequality holds with
K log N on the right side. Previously, however, it was not even
shown that the left side tended to infinity as a function of N. Indeed
in the course of the proof of Theorem 2 we actually need this fact.
The proof of Theorem 3 is completely independent of any abstract
considerations. It is accomplished by exhibiting finite linear com-
binations of exponentials, ¢, such that lqbkl =1 and yet, if u denotes
the measure

N
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dx>K(
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Jéudu is large. We use some general lemmas concerning measures to-
gether with a combinatorial argument concerning the distribution of
the integers #;. In the case of idempotent measures, the same type of
argument is used to show that the set E has many finite sets P such
that for all x in E, there is some p in P such that x4 lies in E. This,
however, does not suffice to characterize E and further arguments
are necessary. The details are too complicated to give here but will
appear in forthcoming publications.
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