HOMOMORPHISMS AND IDEMPOTENTS OF GROUP ALGEBRAS

BY PAUL J. COHEN

Communicated by Walter Rudin, January 14, 1959

Let G be a locally compact abelian group. We denote by M(G) the algebra of all finite complex-valued Borel measures on G. The algebra is normed by assigning to each measure its total variation, and the product or convolution of the measures μ and ν is defined by

$$(\mu * \nu)(E) = \int\!\!\int_{x+y\in E} \!\!d\mu(x) d\nu(y).$$

If a particular Haar measure is chosen on G, the subalgebra of absolutely continuous measures may be identified with L(G), the algebra of absolutely integrable functions. The Fourier transform of a measure μ is a function $\hat{\mu}$ defined on \hat{G} , the dual group of G, by the formula

$$\hat{\mu}(\chi) = \int_{G} (\chi, g) d\mu(g),$$

where (χ, g) denotes χ evaluated at g. Each χ thus yields a homomorphism of M(G) onto the complex numbers. Every such homomorphism of L(G) is obtained in this way.

Let ϕ be a homomorphism of L(G) into M(H). After composing with ϕ , every homomorphism of M(H) onto the complex numbers either is identically zero, or can be identified with a member of \hat{G} . We thus have a map ϕ_* from \hat{H} into $\{\hat{G}, 0\}$, the union of \hat{G} and the symbol 0, the latter to be considered as the point at infinity. Our main result is:

THEOREM 1. For every homomorphism ϕ of L(G) into M(H), there exist a finite number of cosets of open subgroups of \hat{H} , which we denote by K_i , and continuous maps ψ_i : $K_i \rightarrow \hat{G}$, such that

$$\psi_i(x + y - z) = \psi_i(x) + \psi_i(y) - \psi_i(z),$$

with the following property: there is a decomposition of \hat{H} into the disjoint union of sets S_i , each lying in the Boolean ring generated by the sets K_i , such that on each S_i , ϕ_* is either identically zero or agrees with some ψ_i , where $S_i \subset K_i$.

Conversely, for any such map of \hat{H} into $\{\hat{G}, 0\}$, there is a homo-

morphism of L(G) into M(H) which induces it. The map carries L(G) into L(H) if and only if ϕ_*^{-1} of every compact subset of \hat{G} is compact.

The main tool in the proof of Theorem 1 is the following lemma:

LEMMA. If G and H are compact, then the graph of ϕ_* , namely all pairs $(\phi_*(h), h)$ where $\phi_*(h)$ is not zero, is such that its characteristic function is the Fourier transform of a measure on $G \times H$.

The measure in the lemma must of course be an idempotent, that is, satisfy the equation $\mu * \mu = \mu$. The essential difficulty rests in the determination of all idempotent measures on a group.

THEOREM 2. If μ is an idempotent measure, then $\hat{\mu}$ is the characteristic function of a subset E of \hat{G} which lies in the Boolean ring generated by cosets of open subgroups of \hat{G} .

It is not difficult to deduce Theorem 1 from the above statements in the case in which G and H are compact. In the general case one shows that there is a natural extension of ϕ to a homomorphism of $L(\overline{G})$ into $M(\overline{H})$ where \overline{G} and \overline{H} are the Bohr compactifications of G and H respectively. It can then be shown that if \widehat{G} and \widehat{H} are taken in the discrete topology, Theorem 1 holds. However we know that ϕ_* is continuous and after some manipulation we can show that Theorem 1 holds in the original form.

Both Theorems 1 and 2 were known in special cases before. We note that Theorem 2 implies that the support of an idempotent measure is contained in a compact subgroup. Conversely, it is simple to reduce Theorem 2 to the case where G is compact. If μ is absolutely continuous then it clearly is a finite sum of characters multiplied by Haar measure. The difficulty in general lies in analyzing the singular part of μ . Here the main point is to show that μ has mass on a closed subgroup of infinite index. In the case that \hat{G} has no elements of finite order, this statement is equivalent to saying that the set E intersects some cyclic subgroup of \hat{G} in an infinite set. For arbitrary \hat{G} it is proved by more complicated means. In either case one needs a technique which will yield some restriction on the nature of the set E. It is of course true that E can be an arbitrary finite set. Hence we can only hope to derive statements about the set E which allow for a finite number of exceptions. Nevertheless, our technique yields statements concerning finite sums of characters. These we state for the circle group.

THEOREM 3. For some K, whenever c_i are such that $|c_i| \ge 1$, and n_i are arbitrary distinct integers, we have

$$\int_{0}^{2\pi} \left| \sum_{j=1}^{N} c_{j} e^{in_{j}x} \right| dx > K \left(\frac{\log N}{\log \log N} \right)^{1/8}.$$

It is a conjecture of Littlewood that the inequality holds with $K \log N$ on the right side. Previously, however, it was not even shown that the left side tended to infinity as a function of N. Indeed in the course of the proof of Theorem 2 we actually need this fact. The proof of Theorem 3 is completely independent of any abstract considerations. It is accomplished by exhibiting finite linear combinations of exponentials, ϕ_k , such that $|\phi_k| \leq 1$ and yet, if μ denotes the measure

$$\sum c_j e^{injx} dx$$
,

 $\int \phi_k d\mu$ is large. We use some general lemmas concerning measures together with a combinatorial argument concerning the distribution of the integers n_j . In the case of idempotent measures, the same type of argument is used to show that the set E has many finite sets P such that for all x in E, there is some p in P such that x+p lies in E. This, however, does not suffice to characterize E and further arguments are necessary. The details are too complicated to give here but will appear in forthcoming publications.

REFERENCES

- 1. Arne Beurling, and Henry Helson, Fourier-Stieltjes transforms with bounded powers, Math. Scand. vol. 1 (1953) pp. 120-126.
- 2. Henry Helson, Isomorphisms of Abelian group algebras, Ark. Mat. vol. 2 (1953) pp. 475-487.
- 3. ——, Note on harmonic functions, Proc. Amer. Math. Soc. vol. 4 (1953) pp. 686-691.
- 4. Walter Rudin, Idempotent measures on abelian groups, to appear in Pacific J. Math.
- 5. ——, The automorphisms and endomorphisms of the group algebra of the unit circle, Acta Math. vol. 95 (1956) pp. 39-55.
- 6. —, On isomorphisms of group algebras, Bull. Amer. Math. Soc. vol. 65 (1958) pp. 167-169.
 - 7. R. Salem, On a problem of Littlewood, Amer. J. Math. vol. 7 (1955) pp. 535-540.

Massachusetts Institute of Technology