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Introduction. One might judge from the title that I am going to 
discuss continua. For is not a continuum either aposyndetic or non-
aposyndetic? What I intend to do is to consider continua from a 
certain point of view, and from this point of view continua may be 
classified in a rough sort of way. This system of classification (and the 
basic concept upon which it rests) is only in its infancy. Here then 
is a report upon the beginning rather than the completion of an 
interesting and, I trust, useful field of study. 

P 

EXAMPLE 1 

To avoid any confusion, I shall confine this discussion to continua 
lying in a compact metric space which in most cases is the complex 
number sphere (or a topological 2-sphere, 52). Hence all continua 
are connected, closed, and compact sets. 

Consider the difference between the familiar concepts of a con­
tinuum being connected im kleinen at a point and a continuum being 
locally connected a t a point.1 A continuum M is locally connected at a 
point p of M provided that if R is a region containing p, there exists 
a connected open subset U of M such that RZ)U"Dp* The con­
tinuum M is connected im kleinen at p provided that if R is a region 

An address delivered before the Summer Meeting of the Society at Boulder, 
Colorado, September 1, 1949, by invitation of the Committee to Select Hour Speakers 
for Summer and Annual Meetings; received by the editors December 8, 1951. 

1 For the definition of certain terms and phrases see [ l l ] . Numbers in brackets 
refer to the bibliography at the end of this paper. 
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containing p, there exist a subcontinuum H oi M and an open sub­
set U of M such that RDHD UDp- Now as a point-wise property 
connectedness im kleinen is the weaker of the two. This may be 
seen in Example 1. In this example the plane continuum M consists 
of a simple infinity of contiguous and similar trapezoids (which 
form a sequence converging to p) together with a simple infinity 
of arcs lying in the interior of each trapezoid as indicated. A little 
study will show that M is connected im kleinen at the point p but M 
is not locally connected at p.2 

z 

EXAMPLE 2 

M 

In order to generalize the weaker of these two notions, I shall re­
phrase the definition of connectedness im kleinen. Let M be a con­
tinuum and let G denote the collection of all closed subsets of M. 
Then M is connected im kleinen at a point p of M provided that if K 
belongs to G and does not contain p, there exist a subcontinuum H 
of M and an open subset U oi M such that M—iO^O CO/>. Now 
let G' be the subcollection of degenerate elements of G, and sub­
stitute G' in the previous statement for G. Thus M is aposyndetic at p 
provided that if k is a point of M distinct from p, there exist a sub­
continuum H oi M and an open subset U oi M such that M—k 
D £ O t O £ « The term aposyndetic means bound-together-away-
from.8 So for each point k in M—p, M is bound together at p away 
from k because the continuum H lies in M—k and contains a (rela­
tive) neighborhood of p. 

It may be helpful to consider the following simple example in the 
plane (Example 2). In this example the continuum M consists of a 
simple closed curve together with a simple infinity of rectangles as 

2 An example of this nature has been given by Ayres in [ l ] . 
8 Gk. apo» away from, syn=together, deo=to bind. See [4]. 
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indicated, these rectangles forming a sequence which converges to 
the interval xyz. This continuum M is aposyndetic at x, and M is 
aposyndetic at y with respect to z but M is not aposyndetic at y with 
respect to x because if U is an open subset of M containing y, any 
subcontinuum of M which contains U would have to contain x. 

Boundary point theorems. The usefulness of the property of a con­
tinuum being aposyndetic at a point is illustrated by the following 
two theorems. 

EXAMPLE 3 

THEOREM 1. In S2 let D be a complementary domain of a continuum 
M. Then S2—D is connected im kleinen at every point where M is 
aposyndetic* 

A simple special case of Theorem 1 may serve to make the theorem 
clearer: If the continuum M does not separate S2, then M is con­
nected im kleinen at exactly those points where M is aposyndetic. 
It does not follow that M is locally connected at these points. In 
Example 1, throw away every point to the left of a vertical line 
through p. The remaining points form a continuum (not separating 
S2) which is aposyndetic at p but which is not locally connected at p. 

However consider the following theorem : 

THEOREM 2 (BING). If a continuum M is not separated by any of its 
subcontinua t then M is locally connected at every point where M is 
aposyndetic [3]. 

Here is a test for local connectedness—at least in some cases. 
4 Theorem 1 is a corollary of Theorem 10 in [4]. A complementary domain of a 

continuum is a component of its complement. The term domain will be used in general 
as equivalent to open set and is not necessarily connected. 
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Return once more to a consideration of Theorem 1. Suppose that 
(in S2) D is a connected domain and M is the boundary of D. Is M 
connected im kleinen at every point where M is aposyndetic? No. 
For consider Example 3 in which M is the sum of a simple infinity of 
tangent ellipses as indicated together with their sequential limiting set 
xyz. Even though M is aposyndetic at y, M is not connected im 
kleinen at y. But M is not aposyndetic at y with respect to x+z. 
This observation may be formalized as follows: 

THEOREM 3. Suppose that y is a point of the boundary M o f a con­
nected domain in 52. Suppose further that if x and z are points of 
M—y there exist a subcontinuum H of M and an open subset U of M 
such that M— (x+z) DJEO UDy. Then M is connected im kleinen at y. 

Continuous curves, aposyndetic continua. If a continuum were 
aposyndetic at each of its points, one would guess that it would in 
many respects resemble a continuous curve (this is, a continuum 
which is connected im kleinen at each of its points and, hence, locally 
connected). This is particularly true of topological properties in the 
large. For instance consider the Torhorst Theorem. 

TORHORST THEOREM. The boundary of a complementary domain of 
a continuous curve in S2 is itself a continuous curve [13]. 

The "continuous curve" in the hypothesis may be replaced by 
"aposyndetic continuum," so that we have the following: 

BOUNDARY THEOREM (WILDER-WHYBURN). The boundary of a 
complementary domain of an aposyndetic continuum in S2 is a con­
tinuous curve [4; 14; 17]. 

This, of course, follows immediately from Boundary Point Theorem 
1. Priority of discovery belongs to Wilder for the cyclic case [16]. 
G. T. Whyburn proved the theorem independently for the general 
non-cyclic case [14]. Wilder's argument with slight modifications 
was extended by Wilder to the general case—and to higher dimen­
sions [17]. My work generalized the theorem to more abstract two-
dimensional spaces and did away with some of the compactness re­
quirements [4]. Wilder's and Whyburn's arguments are quite 
analogous and depend upon a sort of mass behavior of the points. 
So it may be instructive to compare the various notions involved 
here as well as the terminology. 

Whyburn defined a continuum M to be semi-locally-connected 
(s-l-c) at a point p provided that if U is an open subset of M con­
taining p} there is an open subset V of M lying in U and containing 
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p such that M—U is covered by a finite number of components of 
M— V. Wilder used essentially the same idea. Wilder used the term 
almost i-avoidable (i being associated with dimension). As a point-
wise property these notions are not directly related to connected­
ness im kleinen. For in Example 2, M is s-l-c at z where M is not 
connected im kleinen and M is connected im kleinen at x where M 
is not s-l-c. The situation will be a little clearer if the definition of 
s-l-c is rephrased as follows: the continuum M is s-l-c at a point 
x of M if M is aposyndetic at each point y of M—x with respect to x. 
So we have the following: 

EQUIVALENCE THEOREM. In order that a continuum M be s-l-c it is 
necessary and sufficient that M be aposyndetic [4]. 

As a point-wise property, the notion of semi-local-connectedness, 
while not yielding the boundary point theorem, is useful in another 
direction. 

ACCESSIBILITY THEOREM. If D is a complementary domain of a 
continuum Min S2, then the boundary B of D is accessible from all sides 
from D at those points of B where M is s-l-c.6 

So the notions of a continuum being aposyndetic at a point and a 
continuum being s-l-c at a point are sort of complementary notions 
distilled from the notion of a continuous curve. 

Now to return to the comparison of aposyndetic continua with 
continuous curves. Whyburn's main interest in aposyndetic continua 
was in connection with his cyclic element theory. In general, he has 
shown that for this theory aposyndetic continua (i.e., s-l-c continua) 
are just as satisfactory as continuous curves. In theorem after 
theorem in his book he has made this substitution [IS]. 

A continuous curve in S2 may be characterized by means of its 
complement [12]. There is an analogous theorem for aposyndetic 
continua. 

COMPLEMENT THEOREM. In order that a continuum M in S2 be 
aposyndetic it is necessary and sufficient that its complement be non-
folded [S]. 

To give you an intuitive idea of what it takes to make a domain 
folded in the eyes of a topologist consider Example 2 again. There 
exists in D an infinite sequence of crossed arc-segments (open arcs) 
Ai+Bi whose endpoints lie on the boundary of D such that the end-

6 Neither B nor M is necessarily s4-c at every point where B is accessible from all 
sides. 
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points of the B4 converge to a point not in the continuum to which 

EXAMPLE 4-1 EXAMPLE 4-2 

the Ai converge. Consider Example 4. The shaded areas in Example 
4.1 form a folded domain, while in Example 4.2 they do not—the 
reason being that the latter may be straightened out (by stretching) 
without doing violence to the topology. 

EXAMPLE 5 

A cyclic* aposyndetic continuum in S2 may be characterized as a 
continuum each of whose complementary domains is simple (i.e., 
has a simple closed curve for a boundary) such that this collection 
of simple domains contains no folded subcollection [5]. That is, the 
situation must be like Example 4.2, not Example 4.1. Wilder also has 
this theorem or something very analogous in his book [18]. 

In connection with the term cyclic, it is fortunate that aposyndetic 
continua have another characteristic in common with continuous 
curves: 

6 A continuum is said to be cyclic provided that no point of the continuum dis­
connects it. 
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CUTPOINT EQUIVALENCE THEOREM. In order that a point p of an 
aposyndetic continuum M be a separating point of M it is necessary and 
sufficient that p be a weak cutpoint of M [14], 

A point p is a separating point (often called cutpoint) of a con­
tinuum M provided that M—p is not connected. A point p is a weak 
cutpoint (often called cutpoint) of a continuum M provided that 
M—p is not strongly connected (i.e., continuum-wise connected). For 
continua in general the two properties are not the same. Consider 
Example 5. (In this example, if the circle were considered to be a 
point, M would be a simple closed curve.) If p is removed from M 
the remaining set is connected but not strongly connected. For 
aposyndetic continua Whyburn (and I would guess Wilder also) 
showed that this cannot happen. 

There are, however, considerable differences between continuous 
curves and aposyndetic continua. In Example 1, M is aposyndetic 
at every point and connected im kleinen at p but is not locally con­
nected at p. In fact a cyclic continuum may be aposyndetic and not 
be connected im kleinen at any point whatsoever. In Example 6 the 
continuum M consists of all circles centered on (1/2, 0) and passing 
through a point of the Cantor discontinuum (on the interval from 0 
to 1 on the #-axis) together with the bridging arcs as indicated each 
of which is to be considered to be a point. Since these bridging arcs 
alternate their position between the vertical and horizontal (as the 
size of the gap bridged decreases) it is clear that M is not connected 
im kleinen at any point of M. A little examination, however, 
shows that M is aposyndetic at every point of M. 
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Classification of continua. With the meaning of aposyndetic well in 
mind but before proceeding further we shall try to get a view of all 
continua in the light of this notion. If a person were to start to classify 
continua he would most certainly want the well-behaved continua 
(like arcs, simple closed curves, and continuous curves in general) a t 

• not aposyndetic at . 
any point with respect closed set | 
to any other point aposyndetic 

I (indecomposable) (continuous curves) | 

arc V 

curve / 

totally non-aposyndetic aposyndetic | 
(not aposyndetic at (semi-locally-connected)l 
any point) (freely decomposable) I 

Spectrum 

one end of the classification and the ill-behaved or psychopathic 
continua (like indecomposable continua) at the other. Imagine all 
continua spread out in a sort of spectrum with the bad ones on the 
left and the good ones on the right. This is illustrated in the figure. 
An indecomposable continuum is one which is not the sum of two 
proper subcontinua. One of the simplest examples of such a con­
tinuum is the one indicated in Example 7 [8]. This continuum con­
sists of a countable infinity of collections of semi-circles, the first 

EXAMPLE 7 

such collection being concentric a t (1/2, 0) on the X-axis and using 
up all of the points of the Cantor discontinuum as endpoints of its 
elements, the second such collection being concentric at (5/6, 0) and 
using up all of the points of the right-hand half of the Cantor set as 
endpoints of its elements, etc., as indicated. Notice that in this 

> /pseudo 
' \ arc 
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example no point is a separating point but every point is a weak 
cutpoint. 

Fundamental cutpoint theorems. In the left-hand half of the 
spectrum the weak cutpoint notion is of considerable importance. 
Actually we have two fundamental theorems. 

THEOREM 1. A totally non-aposyndetic continuum contains a weak 
cutpoint [6], {A totally non-aposyndetic continuum is one which is not 
aposyndetic at any one of its points.) 

IP IP 

W \\-J 

m 

IP IB 

KJ W 

EXAMPLE 8 

One is the largest number of weak cutpoints that a totally non-
aposyndetic continuum must necessarily contain. For a simple case, 
consider again Example 5, and replace the ray (which starts at p and 
is wrapped back and forth around the circle) by a bundle of rays 
(with a Cantor set cross-section) all of which start at p. A little 
examining will show that this continuum is totally non-aposyndetic. 
Nevertheless, it has no separating point and p is its only weak cut-
point. 

THEOREM 2. A totally non-semi-locally-connected continuum pos­
sesses a dense set of weak cutpoints [6]. 

Theorem 2 might lead one to suspect that a totally non-semi-
locally-connected continuum is more non-aposyndetic than a totally 
non-aposyndetic continuum. This is not the case, for such a con­
tinuum need not be totally non-aposyndetic, in fact, such a con­
tinuum may be locally connected at one of its points. Consider 
Example 8. The continuum indicated in this example consists of 
vertical unit intervals erected at each point of the Cantor discon-
tinuum on the interval from 0 to 1 of the X-axis (in the plane) to­
gether with the branching structure emanating from the point p. This 
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branching structure consists of a bundle of rays (with a Cantor set 
cross-section) emanating from p and separating into equal branches 
at the places indicated in the figure. The continuum thus obtained is 
totally non-semi-locally-connected, each of its points is a weak cut-
point, but it is locally connected at p. 

Using these two theorems, one obtains a rather interesting theorem 
about continua which have no weak cutpoints. 

THEOREM 3. A continuum which contains no weak cutpoint is both 
aposyndetic and s-l-c at all points of a dense inner limiting subset 
(Gi-set). 

M 

EXAMPLE 9 

In spite of this theorem and Wilder's terminology (avoidability) 
a continuum containing no weak cutpoint may be composed largely 
of points at which it is neither aposyndetic nor s-l-c. To give a strik­
ingly good example would take up too much space but the following 
example will suffice. In Example 9 the continuum M consists of a 
rectangle (in the plane) together with the vertical intervals spanning 
the rectangle at the points of the Cantor discontinuum on its base 
plus infinitely many U-shaped arcs based alternately on the top and 
bottom sides of the rectangle as indicated. The continuum M is cyclic 
but fails to be aposyndetic or semi-locally-connected at each non-
endpoint of each of the vertical intervals. 

I suspect these cutpoint theorems of having many applications. I 
want to mention one. Bing showed that if a nondegetierate con­
tinuum is cut (in the weak sense) by no one point but is cut by each 
pair of its points, then it is a simple closed curve. Using the first 
Fundamental Cutpoint Theorem he knew that the continuum had to 
be aposyndetic at a point and this gave him just enough of a hold on 
the problem to complete the proof [3]. 

Topological products. With the discussion and examples up to this 
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point in mind, it would not be unreasonable to suspect that the 
topological product of two nondegenerate continua (it contains no 
weak cutpoint) should be aposyndetic. While this is not self-evident 
in the case of indecomposable continua, we do have the following: 

PRODUCT THEOREM (WHYBURN-JONES) . If H and K are nonde­
generate continua their Cartesian product HXK is aposyndetic [6; 14]. 

Whyburn first discovered this theorem but required one of the 
continua to be aposyndetic. There being so many products these days, 
it may be well to point out that the plane is the Cartesian product 
of the X- and F-axis. An annulus is the product of an arc with a circle. 
So a totally non-aposyndetic continuum must be a kind of thin 
continuum: that is, it cannot be a topological product and it must 
contain a weak cutpoint. 

Spectrum analysis. Looking a t the spectrum of continua (see the 
figure) let us examine continua of various kinds and various proper­
ties of continua. Consider first arc-wise connectedness. Using the 
various examples that I have given, it is easy to see that arc-wise 
connected continua lie in every part of the spectrum except in the 
indecomposable end. So there is a problem of possibly expanding 
that portion of the spectrum where they must be arc-wise connected. 
Let us say that a continuum M is G-aposyndetic if G is a family of 
sets and for each point p of M and each element g of G lying in M 
but not containing p, there exist a subcontinuum H oi M and an 
open subset U of M such that M—gZ)HDUDp. Roughly, M is 
bound together a t each of its points away from each element of G. 
If G is the collection of all closed sets, a continuum is G-aposyndetic 
if and only if it is locally connected and such continua are known to 
be arc-wise connected. If G is the collection of degenerate sets, a 
continuum is G-aposyndetic if and only if it is aposyndetic and even 
in the plane such a continuum may be far from being arc-wise con­
nected. Whyburn pointed this out with a different (and simpler) 
example [14] but the reader may see this by looking at Example 6. 

Now consider continua in a given 2-sphere, S2, and suppose that 
we let Gi be the family of all continua in 52 . Let G2 be the family of 
all continua in S2 that are Gi-aposyndetic. In general, for each posi­
tive integer, i, let Gi+i be the family of all continua in S2 which are 
Gi-aposyndetic. For each i > l , each element of G* is aposyndetic. 
Those continua in Gi do not have to be arc-wise connected. Those in 
G2 must all be arc-wise connected. When I first discovered this, I 
thought that perhaps here was an extension of the arc-wise connected-
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ness theorem. But no—the elements of G% are continuous curves! 
What is the nature of the elements of Gzi While they are all aposyn-
detic, they are not all arc-wise connected. Consider Example 10. 

Z I 

Z I 

M 

EXAMPLE 10 

Start with a square (in the plane) plus its interior. Using the method 
of Yoneyama [19] construct an indecomposable continuum by 
digging a canal (i.e., removing a connected open set) into this square 
that winds back and forth within the square so as to come arbitrarily 
close to every point of what is left by a sufficiently devious path. 
Then add to this continuum infinitely many open curves which have 
been drawn into the entire length of the canal and which have been 
bridged with arcs as indicated, the distance between such bridges being 
roughly equal to the width of the canal at the point of the bridge. 
Call this continuum M. To get from the open curve part of M to the 
indecomposable part of M with an arc (or continuous curve) one 
either has to oscillate too much because of the staggered nature of 
the bridges or go too far down the canal (its entire length in fact) 
in trying to reduce the distance between bridges. Therefore the 
elements of G% (continuous curves) lying in the continuum M must 
lie wholly within its indecomposable (Yoneyama) subcontinuum or 
entirely outside of this subcontinuum. With this in mind one can 
see that M is G2-aposyndetic but not arc-wise connected. A simpler 
example than Example 10 will not suffice because from the Wilder-
Whyburn Boundary Theorem those elements of G2 possible in a given 
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(rs-aposyndetic continuum will consist, in addition to degenerate and 
possibly other sets, of the boundaries of its complementary domains. 
For instance in Example 6, M (which is not arc-wise connected) is 
not GVaposyndetic. 

Now, how about the elements of G*i Are they all arc-wise con­
nected? By elementary (and facetious) induction, when i is odd the 
elements of Gi do not have to be arc-wise connected, and when i is 
even the elements of Gi are arc-wise connected. So the only problem 
here is in the limit: Does LimnH>00 G2n+i=sLimn^o0 G2n? And are the 
elements of the limit collection arc-wise connected? As a matter of 
fact my knowledge does not extend to Gi but perhaps this view of the 
problem will tempt someone else to investigate G», i>3. 

Thus for arc-wise connectedness, looking at the spectrum and 
attempting to further refine its structure has not yet proved fruitful 
(except to learn that aposyndetic continua in S2 do have to contain 
arcs and that elements of G2 are continuous curves). 

Now consider irreducible continua. Whyburn showed that those 
which are aposyndetic must be arcs [14]. If they are non-aposyndetic, 
they may be scattered anywhere in that portion of the spectrum. 

Consider a continuum M which is topologically equivalent to each of 
its nondegenerate subcontinua. If M is aposyndetic, it is an arc because 
it is irreducible between some pair of its points. If M is non-aposyn­
detic it may lie a t the other end of the spectrum (as shown by 
Moise's example of a pseudo-arc) [9]. But must it? This question, 
perhaps not quite in this form, has been unanswered for a long time, 
and I suspect that a good many more division lines will have to be 
added to the spectrum before an answer can be obtained. 

Consider a homogeneous continuum M in S2. If M is aposyndetic, 
it must be a simple closed curve [7]. If M is not aposyndetic (and 
such continua do exist [2; 10]), two cases arise: (1) If M does not 
separate S2, Mis indecomposable;7 (2) if M does separate 52 , I would 
guess it may exist outside of the indecomposable end of the spectrum 
but I am not quite satisfied about this. 

The number of problems that this scheme of spectrum analysis calls 
to mind, even for continua in the plane, is immense. I shall mention 
two more: 

1. What does it take to push a totally non-aposyndetic continuum 
into the indecomposable end of the spectrum? 

2. Is there a continuum at the extreme left end of the spectrum 
which if used as a "point" would decompose S2 into itself? From an 

7 The proof of this will appear elsewhere. 
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esthetic point of view, the answer to this question should be yes, in 
order that the spectrum return to its starting point.8 

I have not touched upon dimension theory at all. I would like to 
point out that one cannot raise the dimension of a Knaster continuum 
(and keep it a Knaster continuum) by means of Cartesian products 
for then they become aposyndetic.9 

As I indicated in the introduction, we have here only a beginning of 
a classification of continua by means of their aposyndetic properties. 
I have indicated one way, but not a very fruitful way, of refining 
this classification. And I have indicated in a rough sort of way how 
this crude classification may be used not only to suggest new prob­
lems about continua but also to view the class of continua as a 
whole. I hope that this discussion will challenge others to work on 
these problems, but the research worker who expects to lead a life 
of ease should stay out of the left end of the spectrum. 
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