
RECURSION AND DOUBLE RECURSION 

RAPHAEL M. ROBINSON 

1. Introduction. We shall apply the results of PRF 1 to construct 
by double recursion two functions which are not themselves primi­
tive recursive, but which are related in interesting ways to the class 
of primitive recursive functions. In a sense, this note is a revised 
version of a paper by Rózsa Péter,2 much simplified by the use of 
PRF. 

Let Sx denote the successor of x. We shall say that a function Gnx 
of two variables n and x is defined by a double recursion from cer­
tain given functions, if 

(1) GQX is a given function of x. 
(2) Gsrfi is obtained by substitution from Gnz (considered as a func­

tion of z) and from given functions. 
(3) GsnSx is obtained by substitution from the number GsnX$ 

from Gnz (considered as a function of z), and from given functions. 
I t is clear that if the given functions are primitive recursive, then 

Gnx is a primitive recursive function of x for each fixed n. However, 
as we shall s e e , \jffiX need not be a primitive recursive function of n 
and x. 

In §2, we shall show that the double recursion 

GQX = Sx, Gsrfi == Gnl, GsnSx = GnGsnX 

defines a function Gnx which majorizes all primitive recursive func­
tions of one variable in the following sense : If Fx is a primitive recur-
sive function of x, then there exists a number n such that 

Fx < Gnx 

for all x. I t is also shown that Gnx is an increasing function of n, so 
that 

Fx < Gxx 

for all sufficiently large x. I t follows that GxX is not a primitive re­
cursive function of x, and hence that Gnx is not a primitive recursive 
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function of n and x. The above example is essentially the same as that 
given by Péter, which was a simplification of one previously given by 
Acker mann.3 

In §3, we shall determine two primitive recursive functions Ax and 
B(x, y), such that the double recursion 

Gox = Ax, Gsrfi = 0, GsnSx = GnB(x, Gsnx) 

defines a function Gnx which generates all primitive recursive functions 
of one variable in the following sense : A primitive recursive function 
H(n, x) can be found, such that if Fx is a primitive recursive function 
of x, then there exists a number n such that 

Fx = GnH(n, x). 

I t follows that GxH(x, x) is not a primitive recursive function of x, 
and hence that Gnx is not a primitive recursive function of n and x. 
The above double recursion is of a much simpler form than the one 
given by Péter for a similar purpose. (In a later paper,4 she showed 
how all double recursions can be reduced to a standard form, which 
is however still not as simple as the above.) Also, the functions Ax 
and B(x, y) which we use are comparatively simple; they can be 
obtained by substitution from constant and identity functions, and 

x + y, x — y, x2, [x112], [x/2], [x/3]. 

Here x— y — x—yiî x^y and x~y = 0 otherwise. The function H(n, x) 
which we use is a certain quartic polynomial in n and x. 

Both of these results may be derived from PRF, §7, Theorem 3, 
which states that all primitive recursive functions of one variable can 
be obtained by starting with the two functions S and E, and repeatedly 
using any of the formulas 

Fx = Ax + Bx, Fx = BAx, Fx = Bx0 

to construct a new function F from known f unctions A and B. A second 
form of the result has E replaced by Q, and Ax+Bx by |-4#—Bx\ . 
Here Ex=x— [x112]2 is the excess of x over a square, and ^ = 0^^ 
is the characteristic function of squares. 

2. The majorizing function. Let the function Gnx be defined by the 
double recursion 

GoX = Sx, GsnO = G » l , GsnSx = GnGsn%* 

8 W. Ackermann, Zum Hilbertschen Aufbau der reelen Zahlen, Math. Ann. vol. 99 
(1928) pp. 118-133. 

4 R. Peter, Über die mehrfache Rekursion, Math. Ann. vol. 113 (1936) pp. 489-527. 
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I t is clear that Gnx is never zero. We shall show that 

GnSx > Gnx, 

so that for any n, Gnx is a strictly increasing function of x, hence 
Gnx>x, that is, Gnx^Sx. In the first place, this is true for w = 0. 
Now assume for any value of n and prove for Sn. We have indeed 

Gsn$X = GnGsn% > Gsn%* 

We shall show next that 

Gsn% ^ GnSx. 

This may be shown for a fixed n by induction in x. For x = 0we have 
equality by definition. Now assume the inequality for some value of 
x and prove for Sx. By the inductive hypothesis and the inequality 
GnSxz^SSx, we have 

GsnSx = GnGsn% è GnGnSx *t GnSSx, 

as was to be shown. In particular, we have 

Gsn% > GnX, 

so that Gnx is a strictly increasing function of n for a fixed x. 
The arguments used up to this point are the same as those given by 

Péter, although we have modified her function slightly. We shall now 
show that to every primitive recursive function Fx there exists a 
number n such that 

Fx < Gnx. 

We shall use the result quoted in §1 from P R F in the second form. 
We must show that the conclusion holds for Sx and Qx, and that if 

it holds for Ax and Bxt then it also holds for | -4#--I ta | , BAx, and 
5*0. We have in the first place 

Qx ^ Sx = Gox < Gix. 

Now suppose that 

Ax < Gk%, Bx < Gix. 

If we set w = max (è, /), then 

Ax < Gnx, Bx < Gnx. 

Hence 

| Ax - Bx | < Gnx, B*0 < G*Gnl = GSnx, 
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and 

BAx < GnGnx < GnGsn% = GsnSx $* Gssn%* 

3. The generating function. We shall make use of pairing func­
tions J(u, v), Kx, Lx, that is, functions which satisfy 

KJ(u, v) = u, LJ(u, v) = v. 

Such functions establish a one-to-one correspondence between all 
pairs of numbers and some numbers. We shall want to use functions 
J(u, v), Kx, Lx, which are primitive recursive, and the conditions 
Kx^x, Lx^x will be needed. We shall also suppose, as in PRF, §4, 
that J (0 , 0) = 0 , and that if LSx>0, then KSx = Kx and LSx^SLx; 
the interpretation of these conditions is discussed there. Suitable func­
tions are 

J(u, v) = ((u + v)2 + u)2 + v, Kx = E[x1'2], Lx = Ex. 

Since for such pairing functions, Kx — u and Lx~v have infinitely 
many solutions for x when u and v are given, we can extend the cor­
respondence from one between pairs of numbers and numbers to one 
between triples of numbers and numbers, by finding two primitive 
recursive functions J(u, v, w) and Mx, with J(u, v, 0) ~J(u, v), and 
such that 

KJ(u, v, w) = u, LJ(u, v, w) = v, MJ(u, v, w) = w. 

Since 7(0, 0, 0) = 0, we see that K0 = 0, ZO = 0, MO = 0. Suitable func­
tions extending the J(u, v), Kx, Lx given above are 

J(u, v, w) = {{u + v + w)2 + u)2 + v, Mx= [x1'*] -*- (Kx + Lx). 

We now define Fnx by the formulas 

F0x = Ex, Fix = Sx, 
X 

F3U+2X = FRUOO + FLUOC, Fzu+Z00 = FLVFKUX, FSU+AX = Fu0. 

According to the theorem of P R F quoted in §1, if Fx is a primitive 
recursive function, then there exists a number n such that Fx = Fnx. 

We shall now define a function Gx (which is not primitive recur­
sive) such that G(2v) = FKvLv+Mv. The definition of Gx is completed 
by supposing that for v>0 

G(2v - 1) = 

FKULV if K v = Zu + 2 or 3u + 3, 

FKVPLV if Kv = 3u + 4, Lv > 0, 

0 otherwise. 
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Here Py=y—1 is the predecessor of y. 
The definition of G(2v) was so chosen that 

Fnx = G(2J(n, x)). 

Thus Gx may be considered as generating all primitive recursive 
functions. The essential numbers FRVLV were put in alternate places 
and modified by adding Mv, and then such values were interpolated 
for G(2z/ —1) that Gx would satisfy a functional equation 

GSx = GB(x,Gx), 

where B(x, y) is a primitive recursive function. Indeed, we shall de­
fine B(x, y) so that the function determined from suitable initial 
values by the formula GsnSx = GnB{x, Gsnx) will approximate to Gx 
in such a way that 

Fnx = Gn{2J(n, x)). 

Thus all primitive recursive functions will be generated by a double 
recursion. 

The definition of B(x, y) is the following: For every v>0, let 

B(2v - 2, y) = 

and 

2J{Ku, Lv, 0) 

2/(0, 0, y * MPv) 

0 

2v 

if Kv = 3u + 2 or 3u + 3, 

if jRTfl = 3u + 4, iz; > 0, 

otherwise, 

if Kv = 0 or 1, 

if Kv = 3u + 2, 

if iTfl = 3u + 3, 

if ÜTÏ; = 3u + 4, It; = 0, 

if Kv = 3u + 4, Zz; > 0. 

2J(Luf Lv, y + Mv) 

B(2v - 1, y) = | 2/(Z«, y, Afv) 

2/(0, 0, Mz>) 

2/(w, y, Mz>) 

We proceed to verify that GSx = GB(x, Gx) in all cases. 

x**2v — 2, ZV = 3 ^ + 2 or 3 « + 3 : 

GB(x, Gx) = FxJLz; = GSx. 

a; = 2z/-2, i&/ = 3tf+4, Zz/>0: 

OB(a, Gx) = FoO + (G* - MPv) = FKPVLPV = F^PZz; = GS*, 

# = 2v — 2, other cases : 

GB(xt Gx) = GO = 0 = GS*. 
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* = 2t>-l, Kv = 0or 1: 

GB(x,Gx) = G(2z>) = GSX. 

* = 2i>-l, 2STi>=*3tt+2: 

G£(*, <?*) = FLJLZ/ + (G* + Mv) = JFLWZ,Z> + F^«£o + Mv 

= FZu+iLv + Mv = GSx. 

* = 2I> —1, i£z/ = 3w+3: 

G£(*f G*) = FLWG^ + Mz; = FLuFKuLv + Mv = F3w+3Zz> + ikf z; = GS*. 

* = 2i> —1, Kv = 3u+4, Lv = 0: 

GB(x, Gx) = FoO + Mv = If v = Fsu+tO + M v = GS#. 

x = 2z;~l, Xz> = 3&+4, Lz;>0: 

GB(xf Gx) = FWG# + Mv = FuFZu^PLv + Mv = F J ^ 0 + Mz; 

= F^O + j|ft> = F3w+4Lz; + M v = GS*. 

Let the function Ax be defined by 

/ x (EZz; + Mv if i£z> = 0, 
A(2v) = \ 

ISZv + Mz; if Kv = 1, 
and Ax — 0 otherwise. Then the double recursion Gtfc — Ax, GsnQ~0, 
GsnSx = GnB(x, GsnX) defines a function Gnx, which we shall show 
approaches Gx as n increases in such a way that 

Gn(2z>) = G(2z0 if Kv g Sn, 

and also f or v > 0 

Gw(2z; - 1) = G(2z; - 1) if Kv ^ Sn. 

We shall prove these two equalities by induction in n. If n = 0t we 
must have KvS 1, and hence 

G0(2zO = A{2v) = F*J* + Mv = G(2z>), 

and for z;>0 
G0(2z/ - 1) = 0 = G(2z> - 1). 

Now assume the result for some value of n and prove for Sn. In the 
first place, GSn0 = 0 = GO. If v > 0 but Kv ^ 1, we have 

G8n(2v) = Gn(2z>) = G(2v), 

Gsn(2v - 1) = Gn0 = 0 = G(2z> - 1). 
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I t remains to consider the case 2SKv^SSn. Now if Kv~3u+2, 
3u+3, or 3w+4, we see that for any y, B(2v — 2f y) and B(2v — 1, y) 
are both of the form 2w with Kw^u<Kvf hence Kw^Sn. I t follows 
that 

GnB(2v -2,y)= GB(2v - 2, y), GnB(2v - 1, y) = G£(2z> - 1, ;y). 

Hence 

GsnSx = GnB(x, Gsn%) = GB(x, GsnX) f or # = 2z/ — 2 or 2z; — 1. 

We shall now prove by induction in v that if 2 ̂ Kv^SSn then 

Gsw(2fl - 1) = G(2* - 1), GSn(2v) = G(2z>), 

which will complete the proof. For a given value of v, we shall derive 
both of these, assuming that 

GSn(2v - 2) = G(2z; - 2) 

provided that 2^KPv^SSn. We have indeed 

G*w(2z; - 1) = GB(2v - 2, Gsn(2*> - 2)) 

= GB(2v - 2, G(2z; - 2)) = G(2z; - 1), 

since B(2v — 2, ;y) depends on y only if Kv has the form 3w+4and 
Lv>0, in which case KPv=Kv, so that the inductive hypothesis may 
be used. Finally, 

Gsn(2v) = GB{2v - l,Gsn(2v - 1)) = GJ5(2Î; - 1, G(2z> - 1)) = G(2z>). 

Let 

E{n, x) = 2J(n, %). 

If JFX is any primitive recursive function of x, then there exists an n 
such that Fx = Fnx. From what we have proved, we see that 

Fx = Fnx = G(2/(^, x)) = Gn(2J(n, x)) = G n # 0 , x). 

thus establishing the result stated in the introduction. 
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