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AND FOR NON-ASSOCIATIVE PRODUCTS 
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This note improves, in two respects, the results of §3.6 of my paper 
The hyper surface cross ratio.1 There it is shown that the number cn 

of independent hypersurface cross ratios that can be formed of 2n 
forms in n variables is 2 for n~ 2, 5 for w = 3, and 14 for n = 4. The 
proof employs the relations between cross ratios obtained by some 
simple permutations of the forms; let R be the set of these relations. 
It is remarked that the cross ratios of 2n — 1 forms in n variables, and 
of In — 1 forms in n — 1 variables, are connected by the same relations 
as the cross ratios of In forms in n variables, as far as these are con­
sequences of the relations R, a "perhaps void restriction." We now 
prove that cn

s=C2n,n/(n+l)1 and that the restriction is in fact void, 
so that a complete knowledge of the relations between the cross 
ratios of 2n—l forms, of 2n forms, and of 2w+l forms in n variables 
Is obtained.2 The corresponding theorems for generalized intersections 
and one more variable are established at the same time. 

The same facts hold for a general class of function ratios, which in­
cludes hypersurface cross ratios and generalized intersections as very 
special cases. The number cn of independent function ratios has a 
simple combinatorial meaning, and appears also as the number of 
partitions of a polygon by non-intersecting diagonals into triangles, 
or of a cyclically arranged set into non-interlaced subsets, as the 
number of possibilities of never losing majority (in an election or a 
game8), and as the number of different products of given terms in a 
given order, in a non-associative multiplication. For the combina­
torial formula, seven proofs are given, six extended to generalizations.4 

Received by the editors September 16, 1946. 
1 Bull. Amer. Math. Soc. vol. 51 (1945) pp. 976-984. 
2 For forms of a sufficiently high degree. Cf., on the other hand, for 5, 5 and 6 linear 

forms in 2, 3 and 3 variables respectively, §§3, 4, 5 of The pentagon in the projective 
plane, with a comment on Napier's rule, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 985-
989. 

8 Or for drops falling on a board one-half of which is supported, and similar physical 
schemes. 

* For an eighth proof cf. P. Erdös and I. Kaplansky, Sequences of plus and minus, 
Scripta Mathematica vol. 12 (1946) pp. 73-75 (for [f(n, n)]*, read/(w, w)/(w+l, ra+1), 
or permit only diagonal moves; in (4), read ml£n). I have made use of oral remarks 
by A. Dvoretzky (in 2.3-2.5) and E. Jabotinsky (in 1.1). 
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1. The main theorem. 1.1. Let F be a function of n arguments 
(variables, points, polymonials) that is (1) almost symmetric (F be­
comes F or — F for every permutation of the arguments), and (2) 
such that the C2n,n functions of any n from among 2n arguments 
an, 012, #21, 2̂2, • • • i dnh #n2 are independent. We then define the 
function ratio of the n pairs of arguments, in the given order, as 
G = II-F(#iri> • * • , 0nrtt)

p, where p = ( — l)^- f /, and the product extends 
over the 2n possible systems m, • • • , rn. We shall prove: 

The number of independent function ratios that can be formed of 
In arguments is C2n,n/(n+l). 

Obviously, the relations between the function ratios do not depend 
on the particular function, except possibly for the influence of the 
factor — 1 affixed to F and hence to G. 

1.2. Further, the same number and relations are obtained in two 
more cases: one of the arguments is allowed to be a symbol p or q, 
defined as follows. For a symbol p} every F involving p is ± 1 , and in­
dependence is only supposed to hold for the C2n-i,n functions of any 
n from among the remaining 2n — 1 arguments. For a symbol g, again 
every F involving g is ± 1 , while in every other factor F of a function 
ratio, the argument paired with q in the definition of that function 
ratio is omitted (and possibly replaced by a factor — 1) ; here F is a 
function of w — l arguments, and the Can-i.n-i functions of any n — 1 
from among the 2# —1 non-symbolic arguments are supposed to be 
independent. 

1.3. In particular, the function F may be the resultant of n forms 
in n variables, or the intersection of n general hypersurfaces in the 
projective w-space over an algebraically closed field, for forms and 
hypersurfaces of a sufficiently high degree (if a symbol q occurs, re­
place every nby n — 1). That in these cases the resultants (and the 
intersections, considered as resultants with an additional linear form) 
are independent, will be shown separately.5 

1.4. We consider the influence on G of three kinds of simple per­
mutations of the arguments. (1) If two arguments of the same pair 
are interchanged, then G becomes 1/G. (2) If two pairs are inter­
changed, then G becomes ±G. By (1) and (2) there belongs, to every 
division of the arguments in pairs, essentially one function ratio. 
(3) If two arguments of one pair and a third argument are permuted 
cyclically, then the product of the three function ratios obtained is 
easily seen to be ± 1 , even if one of the arguments is a symbol p or g. 
It follows that from among the ratios belonging to divisions with n — 2 

6 In the subsequent note Independence of resultants, Bull. Amer. Math. Soc. vol. 
54 (1948) pp. 360-365. 
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fixed pairs, any one is determined by the two others. 
1.5. Let the arguments be represented by 2n points on a circle. A 

division D in pairs is then symbolized by n chords. It has a number 
c of crossings (pairs of chords intersecting within the circle). Choose 
two chords P and Q forming a crossing and express the function ratio 
of D by the function ratios of the other divisions Df and D" with the 
same remaining n — 2 chords. A chord of D that crosses P and Q 
crosses either both new chords P ' and Qf of Df or neither of them; 
a chord that crosses just one of P and Q crosses exactly one of P' 
and Q\ and a chord that crosses neither P nor Q crosses neither P' 
nor Ö'. Hence the function ratio of D can be expressed by the function 
ratios of divisions with numbers c' and c" of crossings, less (by an odd 
number) than c, and ultimately by the function ratios of divisions with 
no crossing. It remains to be shown that the number of these divi­
sions is C2n,n/(#+l), and that their function ratios are independent. 

1.6. The independence of the function ratios belonging to divisions 
with c = 0 follows from the independence of the functions Ft if we show 
that these function ratios can be so arranged that each involves a 
function F that occurs in none of the preceding function ratios. 

Let 1, • • • , 2n be the points in their order on the circle. Arrange 
the sets of n numbers, and the corresponding functions F, lexico­
graphically. Among the functions forming a given function ratio there 
is a last one involving the greater number of every pair. Now arrange 
the function ratios with c = 0 according to their last function; it then 
remains to verify that each of them is determined by its last function. 

For a given F, let k be the first point involved. In a division whose 
last function is F, k must be paired with a smaller number, and k — 1 
with a greater number. Hence if c = 0, then k — 1 and k must be paired. 
Omit both, and repeat the procedure. 

A symbol p or q should be denoted by 1. The point paired with q 
remains till the end of the procedure. 

1.7. Of the N=(2n)\/n\2n divisions of 2n points on a circle into n 
pairs, N-2n/(n+l)l — C2n,n/(n+l) are without crossing. 

For let the number of divisions without crossings be cn. We wish 
to express cn+i by Ci, • • • , cn. Let A be one of the 2n+2 points. The 
point A must be paired with a point B for which the number of points 
on either arc AB is even. If the arcs bear 2j and 2k points, besides 
A and jB, then j+k~n, and there are CjCh divisions without crossings 
containing the pair AB (put Co = £i = l) . Hence we have the recursion 
formula cn+i — ^CjCk* It follows that the series6 y = ^cnx

n satisfies 
6 The series is convergent until #'=0, that is, for |*| <l/4=lim£nAn+i Ön 2.1 for 

\x\ <(/—l)l~l/ll)t but we need it only for formal operations. 
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the equation y2 = (y~l)/x, whence 2 ^ = l - ( l - 4 x ) 1 / 2 = l - ]£(l/2) 
• ( -1 /2) (3/2-n)(-4x)»/nl=*2 2^C2n-2.n-i^V^ so that 
n̂ = C2n,n/(w+l) = C2n+i,n/(2w + l). For large values of n we have 

Cn~4:nn-*l2TT-ll2. 
1.8. The same recursion formula holds also for the number cn of 

partitions of a convex polygon of n+2 sides, by non-intersecting di­
agonals, into triangles. Indeed, a fixed side of a polygon of n+3 sides 
belongs, in a partition as required, to a certain triangle; after choos­
ing the triangle there remain two polygons of j+2 and k+2 sides, 
with j+k=n, to be divided in the same manner. Herej = 0, • • • • , n> 
Co = 1. Hence, the value of cn is again C2n,n/(n+l).7 

If, for a regular polygon, congruent or symmetric partitions are 
considered as equal, then the numbers 1, 1, 2, 5, 14, 42, 132, 429, 
1430, 4862, 16796, 58786, • • • are reduced to 1, 1, 1, 1, 3, 4, 12, 27, 
82, 228, 783, 2282, • • • , which are ~cn/2n. 

There is no natural one-to-one correspondence between the parti­
tions of a polygon and the divisions with no crossings. For the latter, 
the numbers of types of congruent or symmetric divisions begin with 
1, 1, 1, 2, 3, 6, 12, 25, • • • and are ~cn/4:n. Congruence and sym­
metry are defined for an equally divided circle. The circle itself is 
determined by the set of all partitions with no crossing. Indeed, for 
every pair on the circumference there are (w — l)2 pairs that appear 
together with the given pair in at least one partition, while for a pair 
that separates 2j from 2k points, j+k — n — l, the corresponding num­
ber is j2+k2<(n-l)2. 

1.9. The recursion formula holds also for the number cn of different 
products of n+\ factors, in a given order, in a non-associative multi­
plication: every product of n+2 terms is obtained by multiplying a 
product of j ' + l and a product of k + l factors, with j+k~n, i = 0, 
• • • , n, co = l. Hence again cn~C2n,n/(n+l).s 

2. Generalizations. 2.1. To determine the number cn of divisions 
7 This and some more general results, including the formula for.cn in 2.2, were ob­

tained in a series of papers from Euler until Cayley, On the partitions of a polygon, 
Proc. London Math. Soc. vol. 22 (1891) pp. 237-262; Collected Mathematical Papers, 
vol. 13, pp. 93-113. Cf. the references given in Rowe and Taylor, Note on a geo­
metrical theorem, Proc. London Math. Soc. vol. 13 (1881-1882) pp. 102-106, to which 
the Catalogue of scientific papers 1800-1900, Royal Society of London, 1908, pp. 86 and 
437 adds papers by Binet, Faure, Grunert, Kirkman, and Liouville. 

8 This was perhaps first remarked by Paolina Quarra, Calcolo delle parentesi, 
Torino Atti vol. 53 (1918) pp. 1044-1047. The connection with the result of Gummer 
(see footnote 11) was noted by J. H. M. Wedderburn, The functional equation 
g(x*)=2ax+\g{x)]\ Ann. of Math. (2) vol. 24 (1923) pp. 121-140, on p. 121. For 
these references I am indebted to the referee. 
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without crossings of nl points on a circle into n /-tuples, choose again, 
for a fixed point from among (n+l)l points, the /-tuple containing 
the point. There remain arcs with jj, • • • , jil points such that 
ji+ • • • +ji = n. For the first arc, there are c^ divisions (co = l), and 
so on. The recursion formula obtained, Cn+i— 2 c i i chy corre­
sponds to a function y — ^cnx

n with yl~(y — l)/x. By Lagrange's 
formula for implicit functions9 we have cn = Czw,n/((/ — l)n+l) 
= Czn+i,n/(/^+l).10 For /= 2, this is a second (less elementary) proof 
for the evaluation of 1.7. 

2.2. The same recursion formula is obtained for the number of 
partitions of a convex polygon of w = (/ — l)w+2 sides, by non-inter­
secting diagonals, into polygons of Z+l sides (polygons with other 
values of m cannot be so divided). To see this choose, for a fixed 
side, the adjacent partial polygon, and proceed as before. 

Yet, though it might seem so at first sight, cn is not connected with 
the number of independent generalized function ratios of the form 

G « JlF(alrlf • • , anrny, r4 = 1, . • • , / , p = €£r>, tl = 1, / > 2. 

The latter number is, even for a fixed division into /-tuples, equal to 
the number of independent ordinary function ratios. Indeed, every 
generalized function ratio can without difficulty be expressed as a 
product of powers of ordinary function ratios, and vice versa. 

2.3. If the In points on the circle are denoted in order by 1, • • • ,/w, 
then every division without crossing may again be uniquely repre­
sented by its last term : the set N comprising the greatest number in 
every /-tuple. As in the case of / = 2, the smallest number of N forms 
an /-tuple together with the k—l— 1 preceding numbers of the com­
plementary set M, and so on. 

Not every set N of n numbers from among 1, • • • , In is the last 
set of a division without crossing, for the procedure of omitting the 
smallest number of N, together with its predecessors, cannot always 
be repeated until no number is left. This can be done if and only if 
k times the number n(t) of numbers belonging to Ny from among 
1, • • • , / (t^ln)y is not more than the number m{t) of numbers be­
longing to the set M of the kn numbers outside N. The number cn 

can, therefore, be interpreted as the number of possibilities for a 
candidate M in an election, who ultimately obtains k times as many 
votes as his adversary N, to have, during the whole time of the 
counting, at least k times as many votes as N. Since 1, • • • , In con-

9 Goursat, Cours d'analyse, 5th éd., vol. 1, 1927, p. 427. 
10 Pólya and Szegö, Aufgaben unà Lehrsâtze aus der h'öheren Analysis, vol. 1, 1925, 

part II, problem 211. 
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tains Cin,n sets of n numbers, the probability of "perpetual pre­
ponderance" is Cn/Cin.n — l/(kn+l). If an additional number 0 is 
prefixed and M (getting kn+1 of ln+1 votes) is required always to 
have more than k times as many votes as Nf the probability is 
Cn/Cin+i,n = l/(ln+l). 

2.4. Generally, for M with m~kn+r and N with n votes, we shall 
prove the probability of the last-mentioned kind of permanent pre­
ponderance to be r/s, where s = m+n = ln-\-r is the total number of 
votes.11 This includes a third proof of the special case k =r = 1. 

For any given arrangement of the votes, let u be the smallest num­
ber such that r(t) = m(t)—kn(t)>0 for every t>u. Then r(u) ^ 0 , and 
the vote u+l belongs to M and adds 1 to r(u). Hence r(«)=0. 
Changing the arrangement of the first u votes alters neither this fact 
nor the characteristic property of u. For every fixed u>0 there are k 
times as many arrangements beginning with a vote for M as there are 
beginning with one for N. On the other hand, for every arrangement 
beginning with a vote for N we have u>0. The latter arrangements 
have the probability n/s, hence there remains for u = 0 the probability 
1— n/s—r/s. 

For k = 1, the first moment of equality of votes may be considered 
instead of the last moment, which leads to a fourth proof of 1.7. 

2.5. The significance of the value r/s is given by the theorem: 
Of every s arrangements that are obtained from each other by a cyclic 

permutation, exactly r show permanent preponderance. 
In case not all the s arrangements are different, they fall into pe­

riods of different arrangements; every period contains the same num­
ber of arrangements with permanent preponderance, so that also r/s 
of the different arrangements have permanent preponderance. 

To prove the theorem (and hence 1.7 for a fifth time), let the votes 
for M and N be arranged cyclically. Neither a vote v for N nor any 
of the k preceding votes is the beginning of an arrangement with 

11 For k=*l this is the "ballot problem, " formulated and solved, by formula (3) of 
§2.7 of this note, by Bertrand, Solution d'un problème, C. R. Acad. Sci. Paris vol. 105 
(1887) p. 369. Ibid. pp. 407, 435, and 440, E. Barbier gave, without proof, the prob­
abilities r/s of 2.4, and r/s of 2.6 for the set of all arrangements. Barbier may have 
proved his first result, and the second one for s>ln, if it holds for s—ln, by the above-
mentioned formula (3); I do not see how he could prove the second result for s=ln. 

For further history, and for related theorems, see A. Dvoretzky and Th. Motzkin, 
A problem of arrangements, Duke Math. J. vol, 14 (1947) pp. 305-313; to the different 
independent formulations of the ballot problem mentioned there, add P. Franklin, 
Amer. Math. Monthly vol. 25 (1918) p. 118, problem 2681, solution by C. F. Gummer, 
ibid. vol. 26 (1919) pp. 127-128, and H. D. Grossman, Scripta Mathematica vol. 12 
(1946) pp. 223-225. 



358 TH. MOTZKIN [April 

permanent preponderance. From v go backwards until, on the arc 
covered, the number of votes for M is k times that for N, which must 
happen; for example go as long as the number of votes for M is at 
most k times that for N: when stopping it will be exactly k times. To 
every vote v for N there belongs such an arc A v of forbidden begin­
nings; and to every vote for N on Av there belongs an arc contained 
in A „. Outside the maximal arcs of forbidden beginnings there remain 
obviously no votes for N and r votes for M. Each of them is good, 
since the first vote v disturbing the preponderance of M would be for 
N, and Av would include the given beginning.12 

2.6. I t is easy to see (still for s^ln) that if, from an arc AV1 we de­
lete every partial arc Av*9 vl'T^V, then there remains only the vote v, 
together with k votes for M, and that for each of these votes v is the 
first vote that disturbs preponderance. Since the deleted votes can be 
divided into groups of / consecutive votes, the probability In/s for 
non-preponderance is equally distributed among the possible re­
mainders, after division by /, of the number of the first vote that dis­
turbs preponderance: 

Of every s^ln arrangements that are obtained from each other by a 
cyclic permutation there are exactly n for which the number of the first 
vote disturbing preponderance has a given value mod /. 

2.7. Instead of r(t)=zm(t)—kn(t), other functions of two or more 
non-negative integers m, n, • • • , not all of which are 0, may be re­
quired to remain positive. Let the given function be m—f(n), and let 
pm,n be the corresponding number of possibilities. Obviously (1) 
pm,n~0 for m^f(n), while for m>f(n), (2) pm,n = l if mn = 0 and (by 
classification of the possibilities according to the last vote) (3) pm,n 
==£m,n-i+A»-i,n if ww > 0. (Similar equalities hold for more than two 
variables.) By (1), (2), (3), pm,n is uniquely defined. There is pm^ — O 
if ra^/(w')> # ' ^ # , so that ƒ (n) may be supposed to be an increasing 
function. Subtracting a constant from m, or adding unity to m, we 
may also suppose ƒ (0) = 0. 

The expression gm,«= Cw+W,m(w — kn)/(m+n) = Cw+n-i,n—kCm+n-i,m 
fulfils (3) and gw,o = 1. For an integer fe, Sfcn,n = 0, so that the pm,n be­
longing tof(n) =kn equals qm,n for m^kn, a fourth proof for 2.4 and 
a seventh proof for 1.7. This proof, the proof in 2.4, and the cycle 

12 Another (for 1.7 sixth) proof of the "cycle theorem": The arrangement» 
tf+1, • • • , s, 1, • • • , u shows permanent preponderance if and only if (1) r(t) >r(u) 
for every />«, and (2) r(u) <r(f)-\~r for every t<u. Let g^O be the minimum value of 
r(t) for /=0, 1, • • • . Put r(u)—q—p; by (1) and (2) we have p<r, and M is the small­
est value such that r(t) >q+p for every t>u. To every non-negative p <r corresponds 
a value of u\ hence there are r such values. 
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theorem 2.5 with its two proofs remain valid for preponderance 
m—kn — k'n1 — • • • >0 over more than one adversary. 

For general f(n), the e x p r e s s i o n Qm,n — 0,o(^m+n,m'TmCt'l^m+n-'l,m 
+ • • • +an, which fulfils (3), can be made equal to pm,n for m^f(n) 
by putting a0 = l and, after determination of ai, • • • , an-i, choosing 
an such that gm,n = 0 for the greatest integer m^f(n). The law for the 
characteristic sequence of integers a0, #1, • • • is not known even for 
the simplest functions except kn with integral k (and related func­
tions, as max (kn — c, 0) or min (kn, c), c>0). 

2.8. Another generalization wanted is the number of mixed parti­
tions, that is, of partitions of a convex polygon by non-intersecting 
diagonals into polygons of / sides, where I is not restricted to a single 
value. The simplest case, partition into triangles and quadrangles, 
has the recursion formula cn+i= ^CjCn-j+ 2^CjCkCn-i-j-k for the num­
ber cn of partitions of an (w+2)-gon. The corresponding series 
y—^2,cnx

n fulfils the equation y — l=xy2+x2yz. The sequence 
Co, • • • begins 1, 1, 3, 10, 38, 154, 654, 2871, 12925, 59345, 
with cn+1/Crr^27/5 = 5A.13 

If I is allowed to take all values 3, 4, • • • , and if PQR and PQR' are 
consecutive vertices of the given and of a partial polygon, then clas­
sification of the partitions according to the position of R' gives the 
formula cn+i — hcn+b2Cn-i + • • • +bn+ic0 with c0 = l, where 6n+i is 
the number of partitions with R~Rf. By omission of Q in the latter 
and possibly connection of P with R we see that bn+i = 2cn for n>0, 
while &i = l. Hence we have cn+i = CoCn+2(ciCn-i+ • • • +cnc0). There 
follows (y — l)/x = 2y2 — y, 4xy = x— ^2iCi/2,n(x

2 — 6x)n. The values 
of Co, • • • are 1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, 
• • • , with cw+iAv->3 + 23/2 = 5.83. 

The numbers of types of congruent or symmetric partitions of a 
regular polygon begin with 1, 1, 2, 3, 9, 20, 73, • • • . 

2.9. The number cn of divisions of n points on a circle into sets of / 
points without crossing may also be generalized to different values of 
/, but with other results than for partitions of polygons. For / = 2 or 
3 we are led to y — 1 *=x2y2+xzyz. The sequence cn begins 1, 0, 1, 1, 
2, 5, 8, 21, 42, 96, 222, 495, 1175, • • • , with cn+1/cn->2.61. For / = 1 
or 2 we have y — 1 —xy+x2y2, and the sequence cn begins 1, 1, 2, 4, 
9, 21, 51, 127, 323, 835, 2188, 5798,15511, • • • , with a ratio tending 
to 3. 

If all values 1 = 1, 2, • • • are allowed, then the numbers of types 

13 This and the following three limits are obtained as reciprocals of the (unique) 
absolutely least x with #'=(). 
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of congruent or symmetric divisions begin with 1, 1, 2, 3, 6, 9, 
24, • • • . The divisions themselves may be classified, for a fixed point, 
according to the next point in the same subset. We obtain once more 
the recursion formula leading to Cn^Gn.n/fa+l). 

UNIVERSITY OF JERUSALEM 

INDEPENDENCE OF RESULTANTS 

TH. MOTZKIN 

In this note it is proved that the resultants of m forms, of a suffi­
ciently high degree, in n variables are independent functions of the 
coefficients of the forms. The proof demands some lemmas on ir­
reducible manifolds, and on monomial manifolds. A monomial mani­
fold is defined by equalities between monomials, that is, products of 
powers of the coordinates. 

In the evaluation of the number of independent hypersurface cross 
ratios and generalized intersections given in two other notes1 I have 
assumed the above theorem to be true for 2n — \ ^m^2n+l and, in 
the case of intersections, where one of the forms is supposed to be 
linear for In — l^m^ln. 

The resultant r—r{a\, • • • , an) of n forms au of positive degree dk 
in n variables Xh within an (algebraically) closed field is uniquely 
defined as an irreducible polynomial in the coefficients of the forms 
such that r = 1 if ah is a power of Xh and r = 0 if and only if values Xk, 
not all of them 0, exist for which all afc = 0. The resultant is almost 
symmetric, that is, it becomes r or —r if the forms are permuted. The 
resultant is multiplicative in the sense that if a form au is a product 
of forms, then r is the product of the resultants obtained by replacing 
ah by each of its factors.2 

THEOREM 1. The Cm,n resultants that can be formed of m forms 
a\, • • • , am in n variables are independent functions of the coefficients 
of the forms, provided that the degree dk of ah exceeds a bound depending 
only on k and n. 

Received by the editors September 16, 1946. 
1 The hypersurface cross ratio, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 976-984, 

§3.6, and Relations between hypersurface cross ratios, and a combinatorial formula for 
partitions of a polygon, for permanent preponderance, and for non-associative products, 
Bull. Amer. Math. Soc. vol. 54 (1948) pp. 352-360. 

2 All these properties of the resultant are well known. Cf. also §1.1 of the before 
mentioned note The hypersurface cross ratio. 


