
A NOTE ON FINITE ABELIAN GROUPS1 

L. J. PAIGE 

1. Introduction. R. H. Bruck2 has pointed out that every finite 
group of odd order is isotopic to an idempotent quasigroup. I t can 
be shown tha t a necessary and sufficient condition that a group G be 
isotopic to an idempotent quasigroup is that there exist one-to-one 
mappings 6 and rj of G upon G satisfying the relationship TJ(X) = X • 0(x), 
for all x of G. The same condition is sufficient to prove the existence of 
a loop M whose automorphism group contains G as a subgroup. We 
shall not a t tempt to show either of these applications; but, since there 
may be others, the present paper is concerned with the existence of 
suitable 0 and rj for any finite abelian group G. For this we have a 
complete answer. Our methods are constructive, but (unfortunately 
from the standpoint of generalization) they make considerable use of 
the commutative law. 

2. Notation. We shall consider a finite abelian group G of order 
w = w(G). 

The product of the n distinct elements of G will be designated by 
P = P(G). 

Let x—»0(x) be any one-to-one mapping (not necessarily an auto­
morphism) of G upon G. Consider the derived mapping x—>rj(x) 
~x0(x). The order of rj, denoted by 0(rç), is the number of distinct 
elements rj(x), for x in G. 

I t is our purpose to prove the following theorem: 

THEOREM 1. There exists a 6 for which 0(rj) =w(G) unless G possesses 
exactly one element of order 2. In the latter case there exists a 6 for which 
0 ( r ? ) = t t ( G ) - l . 

3. Evaluation of p. 

LEMMA 1. p(G) = 1 unless G possesses exactly one element of order 2. 
In the latter case, p(G) is the unique element of order 2. 

PROOF. The set H consisting of the identity and all elements of G 
of order 2 is a uniquely defined subgroup of G. If a £ G is of order 
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1 The author wishes to thank the referee for his suggestions which added consider­
ably to the clarity of the paper. 

2 R. H. Bruck, Some results in the theory of quasigroups, Trans. Amer. Math. Soc. 
vol. 55 (1944) pp. 19-52, especially pp. 35, 36. 
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greater than 2, a^ar1; thus both a and a - 1 appear in p(G) and hence 
p(G)=p(H). 

If H has order 1, p(H) = 1. If H has order 2, elements 1, g, then 
p(H) ^ 1 •£ = £, and £(ff) is the unique element of H (and hence of G) 
of order 2. 

Now suppose jff has order greater than 2; so that H has order 2k, 
k>l. Then JEf has k generators gi, • • • , gk and every element of H 
has a unique representation in the form gfg? * * * gt* where m is 0 
or 1. Hence p{H) =:II(g?1g22 ' * * £**)> where the product is over the 
distinct ordered sets (»i, • • • , w&) with n% taking the values 0 or 1. 
By symmetry p(H) = (gig2 • • • gk)m where m — 2k~"1 and since i > l w e 
have£(iï) = l. 

4. A necessary condition. It is easily shown that there are abelian 
groups for which a suitable 0 does not exist. 

LEMMA 2. A necessary condition that 0{rj) =w(G) is that p{G) = 1. 

COROLLARY. If p(G)^l9 0(rj) <n(G) for all 0. 

PROOF. Suppose there exists a 0 for which 0(rj) =w(G). Then if we 
denote the elements of G by Xi (i = l, 2, • • • , «), 

OM*)] = fb(*). 
and since G is abelian, 0 and rj one-to-one mappings of G upon G, we 
have p2=:p or /> = 1. The corollary should be obvious. 

5. The main theorem. In order to avoid complexity, we prove the 
following lemma before proceeding with the proof of Theorem 1. 

LEMMA 3. If for 0, 0(rj) g w — 2, where n = n{G), there exists a 0' such 
thatO{r)')>0{ri). 

COROLLARY. There exists a 0for which 0(rj) = w(G) — l. 

PROOF. Let 0 be a mapping for which 0(rj) = r:S» —2. Denoting the 
elements of G by Xi (i = l, • • - , n), let rj(xi) (i = l, • • • , r) be the r 
distinct elements of rj(x), for x in G. If there exist integers h, k>r 
such that Xh0{xk)9£t]{xi) (i^r), the problem is solved by setting 
0'(xh) =0(#fc)> O'ixj^—Bixh) and 0'(#)=0(x) for the remaining ele­
ments of G. Hence, assume that this is not the case. Since rj(xr+i) 
= 7?(xt-) for some i^r, there is no loss in generality in assuming that 
r}(xr+i) = *?(tfi). If *i0 (^+2)7^ ??(#*) ( t^ r ) , we can set 0'(xi) =0(^+2), 
0'(tfr+2)=0(tfi) leaving 0f(x)~0(x) for the remaining elements of G 
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and thus construct a 0' with 0(rj')>r. But if xid(xr+2) = *?(**) for some 
iHkry we note tha t Xid(xr+2)7*ri(xi). Hence we may assume without 
loss of generality tha t tfi0(xr+2) = ^(#2). 

Now #20(xi) T^rç(tfi), r\{xi). If X2Ö(xi) T^rjixi) ( i g r ) , we could change 
0 by setting 0'(*i) = 0(xr+2), 0'(x2) = 0(xi), 0'(*r+2) =ö(x2) and thus con­
struct 0' with 0(rj')>r. Otherwise we may assume without loss of 
generality that x2d(xi) =r}(xz). 

Continue in this manner and suppose we have reached the point 
where 

(1) %i6(xr+2) = *?(#2), Xi+iO(xi) = r?(*t+2) (i = 1, 2, • • • , k). 

From (1) we derive the equations 

(2) *(*i)»(*r+*) = v{**ùO(*i) (* - 1, 2, • • • , * + 1). 

In fact ï?(^i)ö(xr+2) =^iÖ(^i)ö(xr+2) ==^iö(xr+2)ö(xi) =^(x2)ö(xi); so as­
sume iK#i)0(#r+2)=rç(#i+i)0(#y) f ° r some j , with l ^ j ^ f e . Then 
rj(xj+i)6(xj) — Xj+i0(xj)6(xj+i) = 77(xƒ.4.2)Ö(xy+i) ; and the result follows by 
induction. 

Now Xk+20(xk+i) T^rjixi) (i^>k+2), for using (2) this would imply 
il(xi)0(pck+i) = Xk+20(xk+i)0(xk+2) = rj(xic+2)6(xk+i) = rj(xi)6(xi-i)y or 
6(xic+2) = 0(x*_i), which is impossible since i g f e + 2 . If Xk+2Ô(xk+i) 
7*rj(xi) ( i g r ) , we could change 0 by setting 0'(#i) =0(xr+2), 0'(#i+i) 
= 0(x») (i = l , 2, • • • , £ + 1), 0'(#r+2) =0(tffc+2)

 a n d thus construct a 0' 
with 0{t]f)>r. If f̂c+2Ö(xfc+i) = rç(#»-) for some i ^ r we may assume 
without loss of generality that i — k+3 and add to (1) the equation 
#fc+20(#ft+i) —yixjc+z)* However, since 0(rj) is finite, we must reach a 
product xy0(xy-i) 9^7](xi) ( i ^ r ) . This completes the proof of Lemma 3. 
The corollary is obvious. 

In order to prove Theorem 1 we may assume, by the corollary of 
Lemma 3, a 0 for which 0(rj) = w(G) — 1. Hence, let i)(xi) (i = l , • • • , 
ft—1) be the w —1 distinct elements of 77(x), for x in G; z the unique 
element of G not equal to some r){Xi)- Then since 

5 M W ] - lint*) 
we have px^pdixn)"1 = pz"1, where p~p(G) as defined in §2. Thus 
p-^-XnOiXtu*** or ^~177(xn)=2. Hence if £(G) = 1, we see that 0(rj) 
= w(G). But if p(G)^l we know by Lemma 2 that 0(rj)<n(G) for 
all 0. This completes the proof. 

Although there exist groups G for which a 0, such tha t 0(rç) =n(G), 
is easily represented explicitly (for example, if G is of odd order let 
$(x) =x ) , the author found it necessary to use repeated applications 
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of Lemma 3 to obtain suitable 0's for groups of the form Z1XZ2XZ3 
where Z» are cyclic of order 2ni. However, it should be noted that if 
G=GiXG2, a one-to-one mapping 0 of G upon G may be defined by 

» [(*•?)] - [*i(*Mi(y)] 

where 0i and 02 are one-to-one mappings of Gi upon G\ and G2 upon G2 
respectively. Moreover 0 satisfies the relationship 0(rç)è O0?i) • 0(172). 
Thus if 0(?7i)=tt(Gi), 0(772) =w(G2) we would have 0(r))=n(GiXG2) 
and 0 is represented explicitly in terms of 0i and 02. 

UNIVERSITY OF WISCONSIN 

ON RINGS WHOSE ASSOCIATED LIE RINGS 
ARE NILPOTENT 

S. A. JENNINGS 

1. Introduction. With any ring R we may associate a Lie ring (R)t 

by combining the elements of R under addition and commutation, 
where the commutator x o y of two elements x, y&R is defined by 

x o y = xy — y#. 

We call (i?) 1 the Lie ring associated with R, and denote it by 9Î. The 
question of how far the properties of SR determine those of R is of 
considerable interest, and has been studied extensively for the case 
when R is an algebra, but little is known of the situation in general. 
In an earlier paper the author investigated the effect of the nilpotency 
of 9î upon the structure of R if R contains a nilpotent ideal N such 
that R/N is commutative.1 In the present note we prove that, for an 
arbitrary ring R, the nilpotency of 9î implies that the commutators 
of R of the form x o y generate a nil-ideal, while the commutators of 
R of the form (x o y) o z generate a nilpotent ideal (cf. §3). If R is 
finitely generated, and 9Î is nilpotent then the ideal generated by the 
commutators x o y is also nilpotent (cf. §4). 

2. A lemma on L-nilpotent rings. We recall that the Lie ring 8Î 
is said to be nilpotent of class y if we have 
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