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1. Introduction. Properties of boundedness of systems of orthonor­
mal polynomials, significant because of their relation to the conver­
gence of the corresponding developments of "arbitrary" functions in 
series, constitute a subject for detailed investigation in themselves. 
In the case of the orthonormal systems associated with algebraic 
curves no method appears to be readily available for dealing with the 
problem as formulated in general terms, while on the other hand spe­
cial methods of some degree of variety throw light on the facts relat­
ing to curves of particular types [6, 7, 4, 5].1 An earlier paper by the 
present writer [4] is concerned with loci of the second degree; a more 
recent one [5] includes reference to the curves of the third degree 
represented by the equations y=*Axz+Bx2+Cx+D and y2=*xz. Al­
though indefinite multiplication of particular instances would be un­
profitable, some additional illustrations may serve to suggest a more 
adequate picture of the general situation. The following paragraphs 
present extensions of the reasoning to other curves with equations of 
the form y2 = F(x)> where F(x) is a polynomial of the third degree. 

2. The curve y2 =x2(x+l). This curve has a double point with two 
real branches intersecting at the origin. It has a parametric repre­
sentation in which the coordinates are not merely rational functions 
but more specifically polynomials in the auxiliary variable, 

x _ t2 - 1, y - t(t2 - 1). 

Since xz~y2—x2
i any monomial in terms of the coordinates contain­

ing xz as a factor can be replaced on the curve by an expression of 
lower degree. A fundamental sequence of monomials for application 
of the Schmidt process in constructing the orthogonal system on the 
curve is 

(1) 1, x, y, x2, xy, y2, x2yy xy2
t yz

} x2y2, xyz, y\ • • • . 

In terms of the parameter these are respectively 

(2) 1, t2 - 1, t(t2 - 1), (t2 - l)2, t(t2 - l)2, /2(/2 - l)2, 

An arbitrary linear combination of a finite number of the above 
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expressions in t is an arbitrary polynomial in t taking on equal values 
for t~ ± 1 . Each of the expressions enumerated does assume equal 
values for t = ± 1, the value being 0 except in the case of the constant 
which heads the list. Any polynomial can be expressed as a sum of one 
containing only even powers and one containing only odd powers; 
the successive even powers of t are expressible in terms of 1 and the 
second, fourth, • • • members of the sequence (2); if an odd poly­
nomial takes on equal values for t = ± 1 the common value must be 0, 
and the polynomial must be divisible by t2 —-1; and any odd poly­
nomial divisible by t2—l is expressible in terms of the third, fifth, • • • 
members of the sequence (2), since the products of the successive 
odd powers of t by t2— 1 are thus expressible. The orthonormal poly­
nomials in x and y on an arc of the curve marked off by the inequali­
ties a^t^b are, with suitably adjusted weight function, the ortho-
normal polynomials qn(t) on the same interval of values for t, subject 
to the auxiliary condition that qn(l) = #*»( —1) (see [1]). The form of 
the auxiliary condition does not carry any implication as to the rela­
tive positions of the intervals (a, b) and ( — 1, 1). 

Let qo(t), {Z2OO, q*(t), • • • specifically be the orthonormal polynomi­
als for integration with respect to t and weight function unity. Gen­
eralization of the weight function by application of Korous's theo­
rem [8, p. 157 ; 2, pp. 205-208 ; 3 ; 4, pp. 352-353 ] will not be discussed 
here. The orthonormal system contains no polynomial of the first 
degree, since no such polynomial satisfies the auxiliary condition [1, 
pp. 72-73]. 

The proof of boundedness of the q's is similar in principle to others 
which have been given elsewhere [1,5], but possesses enough individ­
uality in detail to justify brief attention. Let po(t), pi(t)9 p2(t), • • • be 
the normalized Legendre polynomials for the interval a^t^b, or­
thogonal for weight unity, with all non-negative degrees represented. 
Let 

« 
Qn(t) = ] £ Cnkph{t)i 

with 

Cnk = I qn{t)pk{t)dt, 
J a 

a representation of this form being possible for any polynomial of the 
nth. degree. Since qn(t) is orthogonal to every polynomial of lower 
degree which satisfies the auxiliary condition, and since 
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pk{t) + 2rH[pk(- 1) - pk(l)] 

is such a polynomial, it follows that 

Cnk = 2~l[pk(\) - #*(- 1)] f tyn(*)<ft 
•J a 

for k<n. 
Inasmuch as both the p's and the q's are normalized 

1= f [în(*)N/=Êi, 

in consequence of which 1 is an upper bound for each of the quantities 
I cnk\, while a t the same time 

Z L - 4"1 [ f «î»W*l E [#*(!) " M - l)]2 S 1» 
fc«0 L v a J Jfc-0 

(3) I f " tqn(t)dt I îS 2 { 2 [^(1) - *>*(- 1)]»} ' \ 

In comparison with the quantity in braces, inequalities will be 
needed presently for pk(l) and ƒ>*( —1) separately. The recurrence 
formula for the p's can be written in the form 

tpk(t) = ak,k+ipk+i(t) + 0Lkkpk{t) + otk.k-ipk-iit), 

with coefficients ak}' each of which has G as an upper bound for its ab­
solute value, if G is the larger of the numbers \a\, \b\ [5, p. 178]. 
For / = ± 1 the formula reads 

pk(l) = aktk+ipk+i(l) + akkpk(l) + a*,;b-i£*-i(l), 

— pk(— 1) = <Xk,k+ipk+i(— 1) + <Xkkpk(— 1) + a*fjfe-i£jfe-i(— 1), 

whence by subtraction 

PhO) + pk{- 1) - aktk+1[pk+1(l) - £*+i(- 1)] 

+ « M [ M 1 ) - M - « ] 

+ a*,*-il>*-i(l) - # * - i ( - 1)]. 

By further addition or subtraction oîpk(l)—pk( — 1), 

2 M ± 1) - **.*fi[#*fi(l) ~ #*+i(~ 1)] 

+ (akk± 1 ) | > * ( 1 ) - M - 1 ) ] 

+ ak,k-.i[pk-i(l) - # * - i ( - 1)]. 
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There is consequently a number &, independent of &, such that 

fc-H 

\pk(±D\^G1j:\pi(i)-pJ(-i)\. 
y«fc-i 

Since furthermore, i f j ^ w — l, 
I PAD - />,(- l) | - {[PAD - PA- Dl2}1'2 

/ w-1 \ 1/2 

s [I:\PAD-PA-DY\ 
it follows that 

#*(± 1) I ̂  3Gi{ 2 ! [̂ y(i) - PA- i)]2V 

if k<*n-2. 
In the representation 

n n-*-3 

(4) ?„(<) = X W»(') + E «»rf»(fl 
ft» n—2 A—0 

the sum from 0 to w —3 can be written as 

/

» ft / w—3 n— 3 \ 

a V /e-0 ft*0 ' 

By the Christoffel-Darboux identity 

£n_2(l)£n_3(*) - pn„z(l)pn„2(t) 
X) Pk(X)Pk{t) = aw_3,n-2 " 

1 

the coefficient an-3,n-2 being defined in agreement with the notation 
of the preceding paragraph. This coefficient then has an upper bound 
independent of n. The quantities £w-2(l), pn-z(l) are subject to the 
inequality at the end of the preceding paragraph. The Legendre poly­
nomials pn-z(t), pn-z(t) are bounded, uniformly with respect to n, 
throughout any closed interval interior to (a, b), and 1/(1—2) is 
bounded except in the neighborhood of / = 1. Similar observations ap­
ply in the case of the identity 

2-f M""" l)Ph(t) = an-3,n-2 
*~0 — 1 — t 

These facts together with (3) show that the whole expression (5) has 
an upper bound independent of n for its absolute value when t is 

file://i:/pad-
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kept away from the values a, b, ± 1. The first sum in the right-hand 
member of (4) is similarly bounded, without special reference to the 
points t = ± 1. The orthonormal polynomials qn(t) are uniformly bounded 
throughout any closed interval which is interior to (a, b) and excludes 
the points t~ ± 1, the last restriction being naturally redundant if the 
values / = ± 1 do not belong to the interval (a, 6). 

3. The curve y2=x2(x — 1). Except for a conjugate point at the 
origin, which is of no concern for the orthonormal system, this curve 
is real only for x à 1. It has the parametric representation 

x « t* + 1, y « t(t* + 1). 

Fundamental monomials in terms of x and y are the same as in (1). 
As functions of t these become 

1, t* + 1, t(t* + 1), (fi + l)2, t(fi + l)2, t*(t2 + l)2, 

An arbitrary linear combination of a finite number of them is an arbi­
trary polynomial taking on equal values for t— ±i, or, in alternative 
characterization, an arbitrary even polynomial plus the product of an 
arbitrary odd polynomial by / 2 + l . 

Let po(t), pi(t), p2(t), • • • as before be the normalized Legendre 
polynomials on an interval (a, h), and let qo(t), <Z2(0> 9ziP)y • • • be the 
orthonormal polynomials on the same interval associated with the 
auxiliary condition qn(i) ~qn(-"i)' The polynomial 

pk(t) + 2-Ht[pk(i) - pk(- i)l 

which is real for real values of t, satisfies the auxiliary condition, and 
qn(t) is orthogonal to it for n>k. Consequently, in the representation 

n /* b 

Qn(t) = *j>jCnkpk(t), Cnh = I q,n(t)pk(t)dt, 

the form 

cnk = 2-H[pk(- i) - pk(i)] f tqn(t)dt 

can be used for the general coefficient when k <n. In analogy with the 
reasoning of the preceding section it is found that 

I f tqn(t)dt\s l{- Z [**(- 0 - PM)]2} » 

the quantity in braces being real and positive; with regard to the 
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question whether it might conceivably vanish it is sufficient to note 
that pi(— i)-*pi(i)7*Q. The reasoning of the preceding section can 
then be adapted step by step to the discussion of the boundedness of 
the present polynomials qn(t),

 m spite of the degree of novelty asso­
ciated with the appearance of imaginaries in the formulas; the only 
material difference is that since the denominators ±i—t in the 
Christoffel-Darboux identity can not vanish on the real interval of 
values of t considered, there is nothing corresponding to the excep­
tional status of the values t = ± 1 in the earlier passage. The signifi­
cance of this difference is of course that the singular point of the curve 
is now definitely excluded from the range of integration. The orthonor­
mal polynomials qn(t) on the interval (a, b) are uniformly bounded except 
near the ends of the interval. 

4. The curve y2~xz-~x = (a:+l)#(# — 1). This curve has no singular 
point, and does not admit the sort of parametric representation used 
above. The discussion of the orthonormal system will be based on 
properties of geometric symmetry, and will be restricted to particular 
domains of integration for which the properties of symmetry in ques­
tion are realized. 

Fundamental monomials in x and y for the application of Schmidt's 
process are still given by (1). In setting up the orthogonal system for 
a portion of the curve which is symmetric with respect to the #-axis, 
with arc length as variable of integration and with unity or any other 
even function of y as weight function, the monomials containing even 
powers of y and those containing odd powers of y can be considered 
separately, since under these conditions any even function of y and 
any odd function of y are orthogonal to each other. 

The even monomials in y from the sequence (1) are 

1, x, x2, y2, xy2
f x2y2, y\ xy\ 

In terms of x these are equal on the curve to 

1, xy x
2, xz — xf x(xz — x), x\xz — x)t (xz — x)2, x(xz — x)2, • • • , 

and linear combinations of the first n+1 of them are linear combina­
tions of the first n + 1 members of the sequence 

1 /y> /y* /v>o /v»4 /y»5 A » 6 /y«7 . . . 

that is, the polynomials of the orthogonal system on the curve which 
are even functions of y are merely orthogonal polynomials in x on the 
corresponding interval with the appropriate weight function. In­
tegration with respect to arc length 5 and with unit weight function 
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over portions of the curve symmetric to each other above and below 
the #-axis is equivalent to a single integration with respect to x and 
with weight 

2—= 2 f i + ^ Y T / 2 = [4?2 + (3*2 - *)2]1/2 

dx L \dx) J (xz - x)1'* 

Since y and 3x2 — 1 do not vanish simultaneously on the curve, the 
numerator in the last expression is a positive differentiable function 
of x. If the domain of integration is the entire closed loop of the curve, 
corresponding to the range —1 ^ # : g 0 , the weight function is equiva­
lent [4, pp. 352-353 ] from the point of view of Korous's theorem to 
[—#(1+#)]"~1/2, and the orthonormal polynomials are uniformly 
bounded over the entire range, those which belong to the last-named 
weight function being reducible by a linear transformation of the in­
dependent variable to the cosine polynomials on the interval ( — 1, 1) 
(see, for example [2, p. 191]). If the domain is a symmetric portion 
of the loop designated by the inequalities — l g # ^ a < 0 o r b y the in­
equalities - K Ö ^ ^ O , or a symmetric arc of the infinite branch 
marked off by the specifications 1 <x Sb, the weight function is equiv­
alent to (l+a;)~1 / 2 or ( —x)~1/2 or (x —1)~1/2 in the various cases re­
spectively, which means that the orthonormal polynomials are uni­
formly bounded on the interval of the #-axis except near the end of 
the interval a t which the weight function remains finite (see [2, pp. 
200-201 ]), or, on the curve, uniformly bounded except near the ends 
of the arc. 

The monomials in (1) containing odd powers of y are 

y, xy> %2y, y\ *y\ *V» y\ *y*> • • • , 

expressible on the curve in the form 

y, yxf yx2, y(xz — x), yx(xz — x), yx\xz — x)y 

y(xz — x)2, yx(xz — x)2, • • • . 

Linear combinations of these are linear combinations of the succes­
sive terms 

y> y%> y%2> y%z> y# 4 > y ^ 5 » y%*> y%7> • • • • 

Orthonormal combinations for unit weight with respect to x are or­
thonormal polynomials in x for weight y2, each multiplied by y. For 
unit weight with respect to 5 and for integration over a pair of arcs 
symmetric with respect to the #-axis, y2 as weight function is to be 
replaced by 
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2y* — «* (*» - *)i/»[4y» + (3*2 - l ) 2 ] 1 ' 2 

if the formulas are still written with x as variable of integration. 
For the oval as domain of orthogonality the weight is equivalent 

to [—x(l +x) ] 1 / 2 for the purposes of Korous's theorem. The orthonor­
mal polynomials in terms of x are essentially the sine polynomials 
(see [2, p. 192]) and on multiplication by [—x(l+x) ] 1 / 2 or by 

y - ± [(1 - *)(- *)(1 + *)]1/2 

give products which are uniformly bounded on the entire domain. 
For the symmetric arcs limited above and below the #-axis by the 
specifications — l^x^a<0, - K a ^ x ^ O , l^x^b, the weight func­
tions for which orthonormal polynomials in x are to be constructed 
are equivalent respectively to (l+x)1/2, (—#)1/2, (JC —1)1/2, and the 
products obtained on multiplication by y, regarded as polynomials 
in x and y, are uniformly bounded near the points where y = 0 and 
elsewhere on the range of integration except near the ends of the re­
spective arcs (see [4, pp. 352-353, 356]). 

The complete orthonormal system being composed in each case of 
the polynomials which are even in y and those which are odd in y 
taken together, the orthonormal polynomials on the closed loop of the 
curve, for arc length as variable of integration and unit weight function, 
are uniformly bounded on the entire loop ; the orthonormal polynomials 
on each of the other symmetric arcs specified are uniformly bounded ex­
cept near the ends of the arc. 

5. The curve y2=xz+x=x(x2+l). This curve has a single real 
branch, of infinite extent, for all points of which x^O. Fundamental 
monomials in x and y are once more those containing no power of x 
above the second. Analysis closely patterned after that of the preced­
ing section shows that the orthonormal polynomials on an arc of the 
curve symmetric with respect to the x-axis, for arc length as variable of 
integration and unit weight f unction, are uniformly bounded except near 
the ends of the arc. 
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