ON THE ZEROS OF POLYNOMIALS WITH
COMPLEX COEFFICIENTS!

EVELYN FRANK

1. Introduction. Problems in dynamics very frequently have physi-
cally realizable solutions only if the determinantal equation of the
system has all its roots in the negative half of the complex plane. It
is therefore convenient to have a simple algorithm for testing whether
this condition holds without actually computing the roots. Solutions
to this problem have been considered by Cauchy [1],2 Routh [6], and
many others. Hurwitz [4] gave a method for polynomials with real
coefficients of the form

1.1) P(z) = 2"+ az"™ '+ aiz™ 2+ - - - + @

According to his rule, all of the roots lie in the half-plane R(z) <0 if
and only if all the determinants

@1y @3y Asy ° ° * 4 Q2p-1
1, as G4+, Gap2
0, 61, a3, , G2p—3

0, 1, a3+, Gps

are positive.

Recently, Wall [8] formulated and proved this theorem by means
of continued fractions. We extend his method to polynomials with
complex coefficients,
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1 The author thanks Professor H. S. Wall for suggestions on the writing of this
paper.

The referee has kindly called my attention to a recent article by Herbert Bilharz,
Bemerkung zu einem Satze von Hurwitz, Zeitschrift flir Angewandte Mathematik und
Mechanik vol. 24 (1944) pp. 77-82 (lithoprinted by Edwards Brothers, Inc.,, Ann
Arbor, Mich., 1945). There is presented in Bilharz’ article an algorithm for the com-
putation of determinants of type D, similar to that given here in §2. Also Theorem
3.2 is essentially the same as the theorem stated and proved by Bilharz (p. 81), and
Theorem 4.1 is equivalent to but approached differently from that stated by Bilharz
without detailed proof.

* Numbers in brackets refer to the bibliography at the end of the paper.
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(1.2) P(z) =z"+ arz™ ' 4+ ag™ 2+ -+ - + @, ar = P5 + iqs,

k=1, 2, ..+, n Therefore, by a rotation and translation, the results
can be applied in an arbitrary half-plane. We form

(1.3) Q(2) = p1z2™ ! + iguz™2 + pazn? 4 iquznt 4 - -
and the J-fraction

@) 1 1 1 1
PG) cEthitltomtbatomt kst e+ st b

where the ¢, are real and the k, are pure imaginary or zero. We find
that all the zeros of P(z) have negative real parts if and only if the
expansion (1.4) exists and the c, are positive (Theorem 3.1). More-
over, if this expansion exists with k of the ¢, negative and (n — k) posi-
tive, then % of the zeros of P(z) have positive real parts and (n—k)
have negative real parts (Theorem 4.1). We find the proofs of these
theorems carry over with no basic changes from those given by Wall
[8] for the case of real polynomials, and at one step the proof of Theo-
rem 3.1 is even simpler in the complex case.

We give in §2 some convenient formulas for expanding a rational
function into a continued fraction of the form (1.4). This leads to
formulations of the preceding theorems by means of determinants
analogous to the Hurwitz determinants.

In §5, we give methods for modifying Theorem 4.1 in case the ex-
pansion (1.4) fails to exist.

In §6, we obtain formulas similar to those in [8] for finding bounds
for the moduli of the zeros of (1.2).

(1.4)

2. Expansion of a rational function into a J-fraction. We consider
here the following problem: If

Jfo = 00z + aqz™ ! 4 - - - + oom,
fi=oanuz™ a2 o s

are two polynomials of degree # and n—1 respectively, fo determine
conditions upon the coefficients oo, + + + , Olon, 011, * * * , C1n Which are
necessary and sufficient in order that

h 1 1 1

fo—r1z+sl+rzz+32+--~+r,.z+s,.’

where the r, and s, are constants, the r, different from zero. This prob-
lem is equivalent to the problem of determining polynomials f, of
degree n—p, p=2,3, - - -, n—1, which are connected with fo and f;

(2.1)

2.2)
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by the recurrence relations

So-1= (758 + $p)fpo + fos1, p=1,2,--:,m,
o1 =0, So = oan # 0, rp, #% 0.

In other words, the expansion (2.2) exists if and only if the euclidean
algorithm for the highest common factor of two polynomials, when
applied to fo and fy, gives a system of the form (2.3).

If we examine the long division process involved in the euclidean
algorithm, we see that the numbers which contribute to the final re-
sult are only those contained in the following table.

(2.3)

Qoo a1 o2
a1 a2 o33
Q11001 Q0012 Q110002 — X00X13 0110003 — (0014
§}=— pPp=— pp=——
a1l a1l agy
anfiz—Puoais anfis—PBuois anfu—Buou
Qg =———— Q= Q= = **
(2 . 4) a1l o131 11
Q2012 = (110028 Q220013 0110024 0220014~ 0110025
Brpp=——— Bpyy=———————— Py=———— -
Q22 Qg 221}
o223 — Pasoss az9fB24— Bagozs o225 — Baacras
Q= — Ay A=
Q22 22 Q22

The expansion (2.2) exists if and only if the numbers ago, 011, 022,
+ +, agy are different from zero. When it exists, we have
(2.5) fp=ﬁz.,___li-_{, sp=ﬁp,p, p=1'2,...’n.
Qp,p Qp,p
Example. Let fo=28+(2+4)22+ (341)z+(21+2), fi=222+1z+2.
The table (2.4) in this case is

1 244 3+ 2i 4+ 2
2 i 2

2442 244 242

9/4 3i/2

—i/3 2

16/9

3i/2
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Therefore,
rno=1/2, e = 8/9 rs = 81/64,
si=14 /4, s2=—4i/21, s = 27i/32,

and the expansion (2.2) is

N 1 1 1

Jo  #/2+ 1+ i/4+ 82/9 — 4i/27 + 813/64 + 27i/32

We now formulate the condition for the existence of (2.2) in terms
of certain determinants.

(2.6)

THEOREM 2.1. The guotient f1/fo of two polynomials (2.1) can be ex-
pressed in the form (2.2) if and only if

2.7 D, # 0, p=01,---,n,

where Do=a and Dy, Dy, « - + , D, are the first n principal minors of
odd order (blocked off by lines) in the array

arn I Q13 o3| o Q15 | Qe

o0 Qo1 a2 o3 o4 (2711

0 an a2 | a3z o | amp

2.8) 0 oo Qo1 Cloz  Cloz | Cloa
) 0 0 an  aip a3 | ou

0 0 aoo ao1 a2 03

------------------

where o, =01,=0 if p>n.

Proor. We suppose first that the expansion (2.2) exists with 7,0,
p=1,2, .+ ,n,s0that the numbers a,,, p=0,1,2, - - -, of (2.4) are
not zero. Consider the determinant D, of order 2p—1,2=<p <n. If we
subtract ago/on; times the (2k—1)th row from the 2kth row, for
k=1,2,.-., p—1, we find with the aid of (2.4) that

B11, Brz Bz, - - -

11y €12, 13, ° °°

ol ﬂllv ﬂl!v ce

D = an ]
b4

0, an, ang *--

0; 0; ﬁll; °

........
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where the new determinant is of order 2p —2. On subtracting Bu/om
times the 2kth row from the (2k—1)th row, for k=1, 2, - . -, p—1,
and making use of (2.4), we readily obtain

(2.9) Dy = (= 1) anDy, p=2,3,n
where D,® denotes the determinant D, with both the subscripts of all
its elements increased by k. From (2.9) we then find immediately that

(2.10)0 D, = (= " alioas -+ aprp1tom P =23, , 1
Since a0, =0, 1, - + -, n, it follows from (2.10) that (2.7) holds.

We suppose now, conversely, that (2.7) holds. Then, a0, 033 #0,
since, by definition, Do=ay9, D1 =am. Since 1150, then (2.10) holds
for p=2, so that Dy= —a 029540, or ap0. This guarantees that
(2.10) holds for p =3, so that Ds= —an a3 #0, or ag 0. On con-
tinuing this argument, we finally arrive at a..5%0, and the proof of
Theorem 2.1 is complete.

We observe that if fi =coz"*+c12" 2+ + « + +cCpa, fo=2" then the
condition of Theorem 2.1 reduces to

oy €1y, ***, Cp
C1, 02, *tty Cpy

---------

Cpy Cpt1y * ** y C2p
p=0,1,:+,n—1(,=0forp>n—1).

This leads to the well known condition for a power series

to have a J-fraction expansion. We may obtain this expansion from
formulas (2.4), (2.5) if we take ap=1, =0, p=1; a1, =Cp1.

Analogous considerations show that there exists a Stieltjes expan-
sion [7] of the form?

1 1t 1 1
(2.11) Lt 7 T=

{d,,._lz if fo(Z) = 0,
fo diz+di+ dez + -+

dan  if fo(0) # O,

3 Expansions for rational functions of the form (2.2) and (2.11) find application in
certain problems in electrical network theory (cf. [2, 3).
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where d,#0, p=1, 2, 3, « - +, if and only if, in addition to condition
(2.7), it is required that the principal minors of even order in the
array (2.8) are different from zero up to and including the one of
order 2n—2 or 2n, according as f,(0) =0 or fo{0) #0, respectively. The
coefficients d, in (2.11) can be computed by forming the table

[ 7 o1 o2
a1 251 13
Q11001 o012 11%02 — 0013 01103 — (0014
a22=——-—-——-——————- a28=~——-————————-— a24=————~—————————-—-—— LI
2.12) an an an
Ql22(X12 — (¥11X28 Qlo20X13— 011024 0220014~ (110825
33 = agy= agp=————— - -
23] o2 [2$1]
Then
Cp—1,p-1
(2.13) dp = -, p=1,2,3---.
Qpp

This may be shown if we apply Theorem 2.1 to the function
2f1(2%) /fo(2%). Since this is an odd function, its expansion (2.2) will
have s,=0, p=1, 2, 3, - - - . From this, (2.11) can be obtained by
simple transformations.

3. Conditions for the zeros of a polynomial to lie in a half-plane.
There is no loss in generality if we assume that the given half-plane
is R(2z) <0 since any half-plane can be reduced to this by a rotation
and translation.

THEOREM 3.1. Let P(2) be a polynomial with complex coefficients
(1.2), and form Q(z) (1.3). The zeros of P(2) all lie in the half-plane
R(2) <0 if and only if

Q(Z)_ Qo ay as Ap—1
P(z) z+a+bi+z+bt+z+bs+--+ 2+ da

where the a, are real and positive and the b, are pure imaginary or zero.

(3.1)

Proor. If the expansion (3.1) holds, one may regard the continued
fraction as generated by the transformations

: 2] ay An1
= w =———-—.—-—-—-,...’wn__ I s
st atbid+w 0 s+ bt ws T8+ b+ wa

and show exactly as in [8] that Q(z)/P(z) is irreducible, and
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@—i §i for R(z) = 0.

3.2
Hence P(2)#0 for R(z) 0.

Conversely, let P(z) be a given polynomial whose zeros are all in
the half-plane R(2) <0. Let P(z) denote the polynomial obtained from
P(2) by replacing its coefficients by their complex conjugates. The poly-
nomial Q(z) of (1.3) is then [P(z)+P(—2)]/2 or [P(2)—P(—2)]/2
according as the degree % of P(z) is odd or even, respectively. We note
that the set of zeros of P(2) is symmetrical to the set of zeros of
P(—3), with respect to the imaginary axis. Hence the geometrical
argument used in [8] can be applied to show that all the zeros of Q(z)
lie on the axis of imaginaries, and that (3.2) holds. Since the zeros
of P(2) are in the half-plane R(2) <0 while those of Q(z) are on the
line R(2) =0, it follows that Q(z)/P(2) is irreducible.

By division we now get

Q(2) _ Qo

P() 3+ a0+ b+ [C(2)/Q@)]
where a, is the negative of the sum of the real parts of the zeros of P(z)
and is therefore positive, b, is pure imaginary or zero, and C(2)/Q(2) is
an irreducible rational fraction in which the denominator is of degree
n—1 and the degree of the numerator is less than #—1. Just as in [8]

it follows that R[C(2)/Q(z) ] 20 for R(z) =0, and hence that there is a
partial fraction expansion of the form

Clx) < L,

-é(—z)- - =1 %+ ixp

where the x, are real and distinct, and the L,>0. Then
— iC(— 1) a2 L

(3.3)

’

(3.4

)

’

(- i3) p=1 2 — Xp
so that
— iC(— 13) a1 as Gn1
O(— 42) st bi—sztbg—--r—2+bsi

where the a, are real and positive and the b, are pure imaginary or
zero. On replacing g by 4z and dividing both members by —i, we get

C(2) ay ay 1

0@ s+bitz+tbat--+3+ by
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On substituting this expression into (3.3), we obtain (3.1), and the
proof of the theorem is complete.* If we put

1 1
G = —, Gp = ’ =1,2,---,n—1, =12:.--,mn,
(3.5) ° ‘1 ? CpCpt1 ? ?
kp = byt

then (3.1) takes the form (1.4). The ¢, are evidently positive if and
only if the a, are positive.

The expansion (1.4) may be conveniently obtained by the method
of §2. For example, if P(2)=28-+(2+41%)22+(3+14)2+(2:+2), then
Q(2) =2224+12+2, and Q(2)/P(z) is the fraction (2.6). Therefore,
a=1/2, c;=8/9, c3=81/64, so that the zeros of P(2) are all in the
left half-plane. Here the zeros are actually —1—14, (—1—4 742)/2,
(—1+412 712)/2.

From the formulas (2.5) and (2.10), we may formulate the condi-
tion for the zeros of P(2) to lie in the half-plane R(z) <0 by means of
certain determinants analogous to the Hurwitz determinants [4]. In
fact, we conclude at once that the numbers ¢, of (1.4) are positive if
and only if (—1)#(»-D/2D >0, p=0, 1, - - - , n, where D, is the de-
terminant of Theorem 2.1 formed with fo =P(3), fi=Q(z). By simple
transformations of these determinants, one may formulate this result
as the following theorem.

THEOREM 3.2. The polynomial P(2) of Theorem 3.1 has all its zeros
in the half-plane R(2) <0 if and only if the determinants

A =,
Ay = (— 1)k-DBD,

Pl) ?s; 1’5: Ct sz—ly —q2y —q4 * "y —q2k-2
1, po po -, p2r—2 —q1, —qs * ", —Q2k-38

(3_6) = O' LILELI ?kr 0’ vy, "Qk—l
0; g2y Q4y * * 5 Q2k—2 Pl’ 1’3, Ct ?21:—8
0! q1, g3y * * * 5 q2k-3, 11 Pz; t ?21:—4

0, cee Qi 0, e, ?k-—l
k=2,3+-+,n(p=¢ =0 for r > n),

4 An additional step is needed in the case of real polynomials (cf. §1), namely,
to show that the b, =0.
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are all positive.
If the g, are zero, this reduces to the theorem of Hurwitz [4].

4. Determination of the number of zeros of P(z) in each of the
half-planes R(z) <0, R(z) >0. We suppose that P(z) is a polynomial
with complex coefficients of the form (1.2). We assume that (1.4)
exists and that the ¢,70. We then have the following theorem.

THEOREM 4.1. The polynomial (1.2) has k zeros with positive real
parts and (n— k) zeros with negative real parts if, in the expansion (1.4),
k of the coefficients c, are negative and the remaining (n—k) are positive.

Proor. Since the expansion (1.4) exists, Q(z)/P(2) is irreduci-
ble. It follows that P(z) cannot have a zero on the imaginary axis.
For, if P(ir)=0, r real, then (cf. §3) Q(r)=[P(ir) £ P(—ir)]/2
= [P(ir) £ P(#)]/2 =0, which is impossible since Q(z)/P(g) is irre-
ducible. Thus the zeros of P(z) have their real parts different from
zero, so that, for R(2) =0, we can write P(2) =re**?, where »>0. If
we consider P(z) as the product of the vectors from its zeros to the
point 2, then we see at once that, as z ranges along the axis of imagi-
naries from 4- «© to —%- «, then 0 decreases by the integral amount
A= N-—P, where N and P are the numbers of zeros of P(z) with nega-
tive and positive real parts, respectively. The same evidently holds if,
instead of P(2), we consider i*P(—12) =rei*?, and let z range along the
real axis from — » to + «. Now

i"P(— 43) = (2" — q13™ ! — paz" f g2t - pzmt - - )
(4.1 + i(p1a™! — gt — pazrt t gt - )

= U(s) + iV(3),
where

V(2) 1 1 1
UG) ¢zt ik — iz + iks — -+ — g+ ihn

which is real when z is real. This may be seen as follows:
The pth denominator of (1.4) can be written in the form

Bl(z) = 012 + k; + 1,

4.2)

cz+ k41, -1, 0, 0,---, 0
1, coz+ kyy — 1, 0,---,
By(z) = 0, 1, g+ By —1,---, 0 ,

--------------------------
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p=2,3,-+,n Since cics - * - ¢, P(2) =B,(2), we then have

€163 *  + CoP(2)

C]Z+ kl) "'"1’ 0) 0»"') 0
1: 025+k29 —1, 09"': 0
= 0, 1, css + k& -1, 0
..... . ....-......cnz-l-k”
(4.3)
6z + kyy — 1, 0,---, 0
1, csz+ ks, — 1, , 0
+ 3 3
0 « ¢ o v e e e e e e e e e e
............... C"Z+k,.
= H(3) + Gn(3)
and
Gn(s 1 1 1
(4.4) @ _

Hos) i+ hitomt bat o+ ott b

If we replace 3 by —iz in (4.3) and (4.4) and make some simple
transformations [5, p. 194], (4.4) becomes (4.2) and (4.3) becomes
4.1).

From this point on, the proof runs almost exactly the same as in
[8]. The number A is the net decrease in

1 V(2
§ = — arctan ——
T U(z)

as 2 increases through real values from — « to 4+ «. Using (4.2), we
form the sequence fo=1, fi=cn2+1k,, « + +, fa, defined by the recur-
rence formula fp41= (Cap2+1kn—p)fp—fo-1, p=1,2, - « -, n—1. These
form a Sturm’s sequence, and we find that A=n—2k, where k is the
number of negative terms in the sequence ¢, ¢, - + +, ¢s. Therefore,
N—P=n—2k, N4+P=n, so that P=k, N=n—Fk, as was to be
proved.

By means of formulas (2.5) and (3.6), Theorem 4.1 can be formu-
lated in terms of the numbers a,, in the first column of table (2.4),
or in terms of the determinants A, of (3.6). In this way the methods
of Routh and Hurwitz, respectively, are extended to polynomials with
complex coefficients.

The method of Theorem 4.1 applies, save in the exceptional case
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where some determinant A, vanishes and the expansion (1.4) fails to
exist. In the next section, we give simple methods for taking care of
this exceptional case.

5. The case where some A, =0. We assume Q(z)/ P(3) is irreducible.
This is no restriction since the common factor can be removed by the
euclidean algorithm. We shall show that the method of §4 may be ex-

tended to find the number of roots in each half-plane even if some
A,=0.

THEOREM 5.1. There exists a number 6 >0 such that for all numbers n
in the interval —3§<n<O0, the expansion (1.4) exists for the quotient
Q(z+n)/P(z+n).

Proor. Form the determinants A, of (3.6) for the polynomial
P(z+ 1) = 2"+ (:C1'n + ar)z™?
4+ (:Can? 4+ a1 4-1C1°1 + @)z 24+ -+« 4+ an.

Then one may readily verify that the A, are polynomials in 7 of de-
gree p2, in which the coefficient of the highest power of 7 is

(5.1)

nCI, nC3; nCSy Ct nczp—l ncly nc3; AR nCZp—s
1; n.C2v nC4y tt nc2p—2 1) nC2y DR nC2p—4
O’ ﬂCI, nC31 Tty nCZp—s * 01 ncly M) nc2p—5
......... ”Cp e e e e e 'nCp—!.

These determinants are always positive, for they are the determinants
(3.6) formed for the polynomial (z4+1)*=2"4,Cis" 14 ,Coz™ 2+ - - -
+,C,, which has its only zero in the half-plane R(2) <0. Then the A,
for (5.1) are polynomials in 5 which are not identically zero. Hence
there must exist a constant 6 >0 such that, for —§ <7 <0, none of
the A, can vanish, and thus the ¢,>0 since they are quotients of
the A,.

Example. We shall apply this theorem to find the number of zeros
in each half-plane for the polynomial P(z) =23+ (2+1)224+(—3/241)3
+(—5/2—5i/2). Here A;=0 so that the expansion (1.4) cannot be
formed. However, if we expand Q(z+1)/P(z+7) into a J-fraction and
retain at each step only the powers of m which dominate as n approaches
zero, we find that, when 7 is near zero, ¢, ¢s, and ¢; are positive, nega-
tive, and positive, respectively. Therefore, P(z-+1) has two zeros with
negative real parts and one zero with positive real part for all ||
sufficiently small. Hence P(z) must also have two zeros with negative
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real parts and one zero with positive real part. Here the zeros are ac-
tually (—1+(11)Y2)/2, —1—1,

We now describe two methods for finding the number of roots in
each half-plane, which are based on the fact that we may alter the
coefficients of P(2) by a very small amount without displacing the
zeros of P(2) more than a very small amount. Therefore, since we have
assumed that P(z) has no zeros on the imaginary axis, the altered
polynomial P’(2) will have the same number of zeros on each side of
the imaginary axis as the original polynomial P(z).

In the first method, we actually increase one or more of the coeffi-
cients by a small positive amount ¢, and obtain the J-fraction expan-
sion (1.4) for the altered polynomial. We then count the signs of the
¢, as before. The following example illustrates the method.

Example. Let P(z) =2%—324—202%+60z2—2z—78. We find that the
expansion (1.4) does not exist for Q(2)/P(z). We therefore form P’(3)
=28—334+(—20+€)23+6032—2— 178, Q'(2) =Q(z) = — 32446032 - 178,
and the J-fraction expansion (1.4) for Q’(z)/P’(2). In this expansion
we find, for all e sufficiently small, ¢;, ¢s, ¢s are negative and ¢, ¢ are
positive, so that there are three roots of P’(z) and hence of P(z) with
positive real parts and two with negative real parts. The zeros of
P(2) are approximately —1.0, —4.4, +4.7, +1.86+.54.

A second method consists in the formation of the continued fraction
expansion for V(2)/U(z) by the euclidean algorithm, that is, we form

V(2) _ 1 1 _1_
U®D 0@+ 0@ + -+ 00

where the ¢, are certain uniquely determined polynomials. Let us
imagine that we have formed a polynomial

(5.3) P@R)=z"+afsmt+afs2+ - + af,

(5.2)

i<mn,

whose coefficients differ by very small amounts from the coefficients
of P(2), and the corresponding expansion

V'(z) 1 1 1
U'G) izt iks— oot iks — -+ — oz + ika

and compare this with (5.2). The method can best be explained by ex-
amples.

Examples. Consider again P(2) =2%— 324— 202346022 —z—78. Here
Vi 1 1 1
U() — 3/3 4+ (3% + 202)/9 + 272/78

(5.4)

(5.5
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We form the Sturm’s functions for P’(2), fo=1, fi=c, - - -, defined
by the recurrence relation fp41=C¢np2'fo—fp-1, p=1, 2, « + -, where
the ¢, are undetermined. We then compare (5.4) and (5.5), and re-
quire that ¢;=27/78, cs= —1/3, and fy= V(2). Therefore, cicsca=1/9,
—c3cs—27cs/18—27¢,/78=60/178. Since fs= U(2) —cs2(27¢22/78—~1),
we see that if we choose ¢3 = — ¢, a small negative number, fs and U(2)
will differ by a very small amount. Then ¢;= (—29 + (2964 36/ €)*/?) /18,
ca=—20/9—c3—26/81cs, so that two of the ¢, ¢, ¢cu have negative
signs and one has a positive sign. These, together with the values of &
and ¢, give three negative and two positive ¢, for P’(g), so that we
find the same result as by the first method.

For the polynomial P(2) =2%+ (i —5)2¢—10:2+ (104 507)3% — 162
+(—16:+480) we find by the same method that in the J-fraction ex-
pansion of the form (5.4) for V’(2)/ U’ (2) three of the ¢, have negative
signs and two have positive. Hence P’(2) and P(z) have three zeros
in R(2)>0 and two zeros in R(2) <0. Here the roots are actually
144, —1—¢, 2424, —2—24, 5—1.

Still another method, which, however, may not always be success-
ful, is to replace z by 1/2 and consider the polynomial 2*P(1/3).

6. Bounds for the moduli of the zeros of P(z). We extend the
method in [8] to obtain bounds for the moduli. If we set

1 1
h = ) h o= y e,
YT st bt Dcas + k) 0 (cas + ka)(esz + k)
1
(6n—18 + ko) (cnz + k.) ’

hn-—l =

then (1.4) becomes

(2 _ (ciz+ ka4 1) _’2 _”1 hay .

P(3) 1 +14+1+---4+ 1
If g1, 89, ¢ +,ga1arenumbers such that0<g,<1,$=1,2, - - -, n—1,
then P(2)0 if 2 satisfies the inequalities ‘h1| =g, |h21 =1 —g)gs

'hxl S(1—g2)gs, * - -, lhn—-ll < (1 —gn—2)gn-. This sequence gives the
bound |z| Z¢, where ¢ is the largest of the numbers

L2 (2 2]

(. 1) 2 1 Cs c1 C3 £ ] Ci1C2 '
CERCR (R -
2\l ¢ s 63 C3 ng(l-g;)lczca| ’ ,
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1 kn Rn— 2

o (= (=12
2 Cn Cn—1

4 1/2

; gn-1(1—gn-2) l Cn—10n I] )

In the example in §3, the numbers (6.1) are 3.76, 2.32 for g1, go=1/2.
The largest, 3.76, gives an upper bound for the moduli of the zeros.
The moduli of all the zeros are, in fact, 1.41. By varying the g,, for
instance, g1 =4/5, g2=3/4, we obtain a closer upper bound. The val-
ues of (6.1) are then 3.38 and 2.87.

kn

Cn

kn-l

+

Cn—1
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