
ON WEAKLY ORDERED SYSTEMS 

M. RICHARDSON 

1. Introduction. By a weakly ordered system we mean a system D 
of elements x, y, • • • with a binary relation > such that 

(1) x > y implies x 5e y 

and 

(2) x > y implies y > x is false. 

The statement "x>y" may be read "x dominates y." Transitivity is 
not assumed ; a transitive weakly ordered system is a partially ordered 
system. By a solution of a weakly ordered system is meant a set V of 
elements of D such that (a) XÇLV and y £ V implies x<y is false and 
(b) #£D— F implies 3>># for some yÇ~ V. The concept of solution 
was introduced in J. von Neumann and O. Morgenstern, Theory of 
games and economic behavior, Princeton, 1944, where it is proved that 
a weakly ordered system which is strictly acyclic1 possesses a solution 
which is unique, and for which a construction is given. This result 
suggests the problem of finding conditions for the existence and 
uniqueness of solutions of weakly ordered systems in general. The 
simplest examples show that if cycles exist neither the existence nor 
the uniqueness of solutions can be expected in all cases. For example, 
the system of three elements a>b>c>a has no solution, while the 
system of four elements a>b>c>d>a has the two solutions (a, c) 
and (bf d). The purpose of this note is to prove the existence of solu­
tions for certain non-acyclic systems. The proof will itself provide a 
method of construction for the solutions. Zermelo's axiom of choice, 
the well-ordering theorem, and transfinite induction will be used. The 
result presented below is a contribution to the general problem sug­
gested above rather than to the theory of games. For the hypothesis 
of the theorem below precludes transitivity completely; that is, it 
precludes the existence of three elements a, b, c, such that a>b, b>c, 
and a>c. This restriction is too severe for the theory of games, just 
as is the assumption of transitivity. The problem remains open for 
weakly ordered systems which are not strictly acyclic but also do not 
satisfy the hypothesis of the theorem below. 
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1 See loc. cit. pp; 590-600 for definitions and proof. 
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2. The theorem. We shall find it convenient to represent the weakly 
ordered system D by an oriented 1-complex or linear graph whose 
vertices are in 1-1 correspondence with the elements of D and such 
that two vertices x and y are joined by an oriented 1-cell xy, oriented 
from x toward y if and only if the element corresponding to x domi­
nates the element corresponding to y. This oriented graph will also 
be denoted by Dy as well as its set of vertices, and we shall denote 
indiscriminately by x, y, • * • either the elements of D or the vertices 
of the graph with which they are identified. The graph D of a weakly 
ordered system is not the most general oriented graph; it contains no 
loops consisting of an oriented 1-cell whose initial and terminal ver­
tices are the same (condition (1) above), and no two vertices are joined 
by more than one 1-cell (condition (2) above). A graph is called even 
if all its unoriented2 1-cycles contain an even number of 1-cells (or 
vertices). We shall prove the following theorem. 

THEOREM. If the graph D is even, then solutions exist. 

Of course, the hypothesis of this theorem implies that all cycles, 
in the sense of von Neumann and Morgenstern, loc. cit., are even, 
but not conversely. 

3. A lemma on graphs. We shall use the following known lemma 
whose proof we include for the sake of completeness and to facilitate 
the construction of examples by the reader. 

LEMMA (KÖNIG).8 The set of vertices of an even graph D can be de-
composed into two disjoint sets P and Q such that every 1-cell of D joins 
a vertex of P to one of Q. 

PROOF. Select a definite vertex x of any (connected) component 
of D. Put a vertex y of the same component into P or Q according 
as the unoriented 1-chains joining x and y have an odd or even num­
ber of 1-cells. If a vertex y could be joined to x by two 1-chains, one 
with an odd and the other with an even number of 1-cells, then there 
would exist an unoriented 1-cycle with an odd number of 1-cells, con­
trary to hypothesis. This may be done for each component of D. This 
proves the lemma. 

4. Proof of the theorem for finite systems. For simplicity, we give 
the proof first for finite systems. 

2 That is, modulo 2. 
8 D. König, Über Graphen und ihre Anwendung auf Determinantentheorie una 

Mengenlehre, Math. Ann. vol. 77 (1916) pp. 453-465. Cf. also D. König, Theorie der 
endlichen und unendlichen Graphen, Leipzig, 1936. 
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Let P and Q be two classes selected according to the lemma. Let 
the elements p of P be ordered by means of a subscript index ranging 
over a lower segment of (finite) ordinal numbers. Let Po = 0 and 
Qo~Q. We now define sets Nk, P*+i, P*>, Qk+i inductively for 
fe = 0, 1, 2, 3, • • • . Let Nk be the set of all elements of P—Pk which 
are not dominated by any element of Qk. If iVfc — O, let V—PkSJQk* 
If Nk 5^0, let pak be the first element of Nk9 that is, the element with 
the lowest ordinal subscript. Let Pjfe+i = P * W [ £ a J . Let Rk be the set 
of all elements of Qk which are dominated by pak. Let Qk+i^Qk—Rk. 

Since the set P is finite, it is clear that there is a least ordinal X 
for which N\ — 0. We shall prove that 

(3) F = P x U g x 

is a solution. 
Notice the obvious relations 

(4) PoQPiÇP2Ç--ÇPxQP, 

(5) Q - Öo 2 Qi 2 Ö2 2 • • • 2 ox, 

(6) () = (U /KXP/OUQX where the sets (U/KX-R/S) and Q\ are disjoint. 

We must prove: (a) if x£,V, ; y £ F , then #<;y is impossible; (b) if 
xÇzD— V, then there exists an element y&V such that x<y. 

PROOF OF (a). Suppose x<y. 
(i) Suppose x and y belonged both to P\ or both to Q\. Since 

P\QP and Q\QQ, this would contradict the property of P and () 
given in the lemma of König. 

(ii) If # £ P x and y(£Q\, thenx = payÇzNy for some 7 <X and hence 
is not dominated by any element of Qyi and, a fortiori, of Q\. This is a 
contradiction. 

(iii) If xÇzQ\ and ;y€EPx, then y^pay for some 7<X. Then xÇ~Ry 

and cannot be an element of Qy+i = Qy—Ry, nor, a fortiori, of ox- This 
is a contradiction. 

PROOF OF (b). Suppose no such y existed. 
(iv) If x&Pr\(D- TO, then tfé^-^x since 2V\ = 0. Hence *GPx. 

Therefore x 6 ^ This is a contradiction. 
(v) If xEQr\(D-V), then, by (6), xERy for some 7<X. Then 

there exists a y such that x <yÇzPy+iQP\Q V. This is a contradiction. 
This completes the proof. 

5. Proof of the theorem for infinite systems. We indicate the modi­
fications necessary in the infinite case. 

We assume that all finite unoriented cycles have an even number 
of 1-cells. By the component to which a vertex belongs we mean the 
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set of all vertices which can be joined to it by finite unoriented 1-
chains. Then the lemma of König holds as before. Now, let the ele­
ments p of P be well-ordered by means of a subscript index ranging 
over a lower segment of ordinal numbers. The construction of the 
sets Nki Pk+i, Rk, (?fc+i will be as before for finite k. But now it may 
happen that Nk~0 for no finite k. 

Consider any ordinal number 7. We shall construct the sets Nyt Py, 
Qyy Ry, and so on, by transfinite induction. 

Case I. If 7 is a limit ordinal and Np=*0 for no j3<7 theii let 
Py — VfiKyPp and Qy~[\fi<yQ&. Let iV7be the set of those elements of 
P—Py not dominated by any element of Qy. Let pay be the first ele­
ment of Ny, and let Py+i — Py\J [pay]. Let Ry be the set of those ele­
ments of Qy dominated by payi and let Qy+i — Qy — Ry. 

Case II. If 7 is not a limit ordinal, it has an immediate predecessor 
7 — 1. If Nfi = 0 for no ]8<7, let pay-\ be the first element of iV7-i. Let 
Py — Py-£J\pay-i\* Let Ry~\ be the set of those elements of Qy-i 
dominated by pay-i. Let Qy = Qy~i--Ry-.i. Let Ny be the set of those 
elements of P—Py not dominated by elements of Qy. 

Let 7T be the ordinal number of the set P in the chosen well-order­
ing. Note that /3 < 7 implies ap <a 7 . There must exist a least ordinal X 
such that iVx = 0, XSTT. Let V=P)\JQ\. It is readily seen that (4), 
(5), and (6) hold whether X is a limit ordinal or not. The proofs of (a) 
and (b) can now be seen to proceed as in the infinite case. 

BROOKLYN COLLEGE 


