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1. Introduction. The main purpose of this address is to explain 
the mathematical content and meaning of the two most important 
limit theorems in the modern theory of probability: the central limit 
theorem1 and the recently discovered precise form of what was gen­
erally known as "KolmogorofFs celebrated law of the iterated loga­
rithm. v The former traces its origin to the very beginnings of the 
theory of probability and is often called after Laplace and Ljapunov. 
For a long time it was clouded in mystery, and Poincaré once re­
marked that mathematicians regard it as a physical law, whereas 
physicists hold mathematicians responsible for it. A great many 
mathematicians have contributed to the gradual recognition of the 
mathematical content of the theorem and to the establishment of the 
precise conditions of its validity. The complete solution came finally 
in 1935 and was possible only by an elimination of all classical re­
strictions and a reconsideration of the problem in a new generality. 

The central limit theorem (like its little brother, the weak law of 
large numbers) is a statement on distribution functions, and can be 
formulated, either as such or in terms of Fourier analysis, without 
any appeal to probability or measure. This is not true of the infinitely 
more delicate law of the iterated logarithm and its generalizations 
(or of the strong law of large numbers) : these are essentially measure-
theoretic. The starting point of the long series of papers which lead 
to the present form of the iterated logarithm was not a problem in 
probability but, surprisingly enough, a problem in Diophantine 
approximations treated by Hardy and Littlewood [1914].2 Their 
original estimate has gradually been improved for their particular 
number-theoretical case and, as a matter of fact, even the precise 
form of the iterated logarithm has first been checked for this particu­
lar case. I t is therefore instructive to realize that , from the point of 
view of the general theory, the Hardy-Littlewood problem consti­
tutes an exceedingly special case comparable only to the role of the 
linear function within the domain of all real functions. Such special 
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cases are in many respects misleading, and usually do not lend them­
selves for generalizations. Thus in its number-theoretical application 
our problem reduces to an evaluation of certain sequences of binomial 
coefficients, and such special techniques are not applicable even to 
the most trivial generalization. The history of probability shows that 
our problems must be treated in their greatest generality : only in this 
way can we hope to discover the most natural tools and to open 
channels for new progress. This remark leads naturally to that char­
acteristic of our theory which makes it attractive beyond its impor­
tance for various applications : a combination of an amazing generality 
with algebraic precision. 

The analytical formulation of our limit theorems seems unfortu­
nately to obscure the fact that a great many individual problems can 
be treated as special cases. This fact seems little appreciated and 
often an unnecessary effort is spent on treating such problems. A few 
illustrative mathematical applications will be found in §4. Better 
examples are furnished by physical applications, but it would be too 
time consuming to explain them. The applicability of the central 
limit theorem to problems in number theory has been amply demon­
strated in papers by Erdös, Hartman, Kac, Wintner, and others. 

Another point to be stressed concerns the abundance of open 
problems. The fact that we now have necessary and sufficient condi­
tions both for the central limit theorem and the iterated logarithm, 
and that we are in a position to make a series of statements of the 
"best result" type, seems to have created the impression that "noth­
ing remains to be done." Actually we have just succeeded in pro­
ducing good working tools and in opening the gate to a multitude of 
new problems both of theoretical interest and of practical impor­
tance. (This is true even for the classical field of so-called independent 
variables. The much wider domain of dependent variables, excepting 
only the theory of Markov chains, remains practically untouched 
despite the excellent pioneer work by P. Levy and S. Bernstein.) 

I t must be understood that the following exposition is concerned 
only with one aspect of the limit theorems and is not intended as a 
survey of modern tendencies in probability. This theory has devel­
oped rapidly (thanks in particular to the famous Moscow School in 
probability) and many new channels have been opened which link 
the theory to many branches of mathematics. Thus the true role of 
the Gaussian distribution can be understood only in connection with 
stochastic processes. The foundations of this new branch of probabil­
ity have been laid in a well known paper by Kolmogoroff [1931 ]. I t 
leads to partial integrodifferential equations of a special kind, but it 
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throws new light even on the classical equation of diffusion and puts 
new interesting problems concerning this and other parabolic equa­
tions [Fortet 1941; Feller 1936]. More generally, this theory seems 
to lead to a new type of functional equations which has not yet been 
investigated. Another aspect of the Gaussian distribution leads to 
the modern theory of infinitely divisible laws [Gnedenko, Khintchine, 
Kolmogoroff, P. Levy] and to the so-called arithmetic of distribution 
functions, inaugurated by P. Levy [Cramer, Khintchine, Raikov]. 
A third approach is that from the classical time series problem or, in 
modern language, from the measure theory in functional spaces 
[Wiener, Doob]: this approach would lead to the theory of random 
noises which now occupies so many minds [cf. Doob, 1944]. In order 
not to get lost in a jungle of general remarks we shall have to restrict 
the considerations to the well defined case of independent variables \ 
we shall not even pause to consider S. Bernstein's Well known gen­
eralization of the central limit theorem to certain classes of dependent 
variables or the important application, due to Kolmogoroff and 
W. Doblin, of that theorem to a more precise study of the ergodic 
properties of Markov chains. 

2. Random variables associated with the dyadic case. For the 
convenience of the uninitiated reader we shall explain the modern 
terminology and the type of our problems on the trivial special case 
of random variables associated with "spinning a coin." It will be seen 
that this case is still considerably more general than the number-
theoretical case to which we have alluded before. 

It is simplest to consider only infinite sequences of tossings of a 
coin: each trial results in a symbol H (head) or T (tail), and the 
sequence of trials will be represented by an infinite sequence like 
HHHTHT • • • . The aggregate of all such sequences (all thinkable 
results of our "experiment") forms the label space © and each se­
quence is called a point. The mapping H—>1, T—>0 makes to each 
point of © correspond a dyadic fraction like .111010 • • • , that is to 
say, a number x (O^gajgl) in its dyadic representation; the label 
space © is in this way mapped onto the unit interval, which will also 
be denoted by @. It is true that the mapping is not unique for num­
bers like .011111 • • • which contain only a finite number of zeros or 
of ones; but this ambiguity will be seen to be of no consequence. In 
the usual way we shall associate with the symbols H and T probabili­
ties 1/2 each, which is equivalent to saying that we introduce the 
ordinary Lebesgue measure on the unit interval. In this manner the 
latter becomes the analytical model of a real "experiment"; every 
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picturesque expression concerning tossings of a coin is automatically 
translated into a statement concerning certain subsets of the unit 
interval: and the words "event" and "probability" become synony­
mous with "set" and "measure," respectively. The mathematician 
can from here on forget all about coins, while the classical probability 
student would from the beginning refuse to translate his picturesque 
statements into equivalent statements referring to the unit interval. 

Consider now "a player who at the &th trial receives or loses an 
amount akt depending on whether the &th trial results in H or TV' 
The feth trial stands for the &th dyadic digit of the number x repre­
senting our particular sequence of trials. Our picturesque description 
therefore associates with every x, given by the dyadic expansion 

(1) * = E ^ (c* - 0 or 1), 
*-i 2* 

a sequence of functions Xk(x) defined by 

I a>k «A; — I t 

(2) Xk(x) « \ k if 
I— ak ek = 0. 

Accordingly, Xk(x) is a real function defined in © assuming only two 
values, each with probability 1/2 (on a set of measure 1/2). The word 
random variable is synonymous with "measurable real function de­
fined in the label space." Having defined the individual gains Xk(x), 
"the total gain in n trials" is a new random variable given by 

(3) Sn(x) = £ **(*). 
*«i 

The number-theoretical case is included herein as the simplest special 
case 

(4) ak m 1. 

It concerns a player who loses or wins always the same amount, and 
can also be interpreted physically as a random walk in a one-dimen­
sional lattice. Of course, Sn(x) is simply the excess (positive or nega­
tive) of the number of occurrences of the digit 1 over the number of 
occurrences of the digit 0 among the first n digits in the dyadic ex­
pansion of x. 

We shall put 

(5) sn = 2 a*>-
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In the sequel we shall assume that {#&} is an arbitrarily prescribed 
sequence such that 

(6) sn—> oo and an = o(sn); 

if one of the conditions (6) is dropped, definite conclusions can still 
be stated, but the considerations become rather trivial. 

The classical or Laplace's problem may be formulated as follows. 
Let n be large, but fixed, and consider Sn(x) as a function of x (which 
means essentially that we compare the total gain after n trials for all 
thinkable results of the experiment). The problem is to determine the 
distribution of values of Sn(x). Now the central limit theorem states 
in our special case that asymptotically for all real £ and rj (%<rj) 

(7) Pr {ïsn < Sn(x) <VSn}~ Hv) ~ *(Ö; 

here the left side stands for the measure of those x for which the in­
equality within the braces is satisfied, and $(£) for the Gaussian 
distribution 

(8) S(Ö = ƒ exp(-j)dv. 

The analytic form of (8) is here of no interest: what matters is that 
for the "reduced" variable 

(9) S*(x) « Sn(x)/$n 

the measure of those x for which Sn(x) lies in the interval (£, rj) is, 
asymptotically, independent of the structure of the particular se­
quence {a&}. We mention only in passim that much more precise 
estimates of the asymptotic behavior (7) are available; they will be 
discussed together with the central limit theorem for arbitrary ran­
dom variables in arbitrary spaces. The importance of the relation (7) 
for many applications is so well known that it needs no amplification. 
Less known is that the central limit theorem is sometimes wrongly 
used in situations where it can not be applied. To this category belong 
all cases of so-called optional stopping, where the number n of trials 
is not a constant but itself a random variable. Thus a player (or the 
subject in psychological card-guessing experiments) does not neces­
sarily decide in advance on the number of trials but will stop at an 
opportune moment. He embarks on one (potentially infinite) se­
quence of trials which is represented by one number x. He is not in­
terested in comparing his gain after n trials with other sequences but 
rather in the fluctuation of his gain Sn(x) for one particular point x 
and as a function of n. 
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The central limit theorem (7) teaches us only that , on the average, 
Sn(x) will be of the order of magnitude of s„. However, it leaves 
theoretically open the possibility that for every x the gain Sn(x) will 
occasionally reach the magnitude sj7, and in many cases it is only 
such an occasional maximum that actually counts.3 The maxima of 
Sn(x) will indeed for almost all x be larger than the probable values 
given by (7). The Khintchine-Kolmogoroff law of the iterated logarithm 
states in our case that with probability 1 (for almost all x) 

, N Sn(x) 
(10) lim sup —j—— r—- = 1, 

n-op Sn{2 l o g l o g SnJ1'2 

provided only that 

(11) an~ o(sn{loglogsn}~u>). 

To explain the meaning of (10) consider the Hardy-Littlewood 
case (4) in which Sn(x) is the excess of digits one over digits zero 
among the n first digits in the dyadic expansion (2). Condition (11) 
is here trivially satisfied, and the law of the iterated logarithm states 
in that particular case that for every positive € and almost all x 
the following statements hold: (i) There are infinitely many n 
such that Sn(x) > {(2 — e)n log log n}1/2; (ii) for all n sufficiently large 
Sn(x) < {(2 + e)n log log n} u*. This is Khintchine's [1924] refinement 
of Borers well known theorem that ualmost all numbers are normal," 
which in our notation means that Sn(x) =o(n) for almost all x. Many 
intermediary steps have led from Borel's theorem to Khintchine's 
result. Hausdorff [1913] proved that Sn(x) =o(nll2+c), Hardy-Little­
wood [1914] that Sn(x)=>0((n log w)1'2), Steinhaus [1922] that 
lim sup Sn(x)/(2n log n)ll2^l (note the log n instead of the iterated 
logarithm); finally Khintchine himself [1923] had proved that 
Sn(x) = 0((n log log w)1/2). I t is well to remember the tremendous 
computational effort which was necessary for the investigation of 
such a simple special case: only against this background can one fully 
appreciate the strength and value of the general arguments which 
permitted Kolmogoroff [1929] to prove the law of the iterated log­
arithm (10) not only for all sequences {an} but for perfectly arbi-

3 In the theory of diffusion the central limit theorem corresponds to the statement 
that the random position of the particle is subject to a Gaussian distribution with 
variance propertional to the time parameter t. It leaves unanswered questions of the 
following type. What is the probability that a particle under diffusion, starting at 
/ « 0 from # = 0, will forever remain within the domain, say, |*| <tï The significance 
of this, and similar more refined problems, stands to reason; they are of the category 
related to the law of the iterated logarithm. 
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trary random variables in arbitrary spaces (cf. §8). Moreover, the 
computational part of the argument in the general case is consid­
erably simpler than in the special number-theoretical case. 

Looking back at the modest beginnings of the theory, Kolmo-
goroff's result (10) would seem as complete as one could desire. That 
it nevertheless is not the final word was first made clear by an ex­
citing discovery due to Marcinkiewicz and Zygmund [1937]. They 
constructed an example showing that the law of the iterated loga­
rithm (10) does not necessarily hold if the condition (11) is replaced 
by the only slightly weaker hypothesis 

(12) *»<€*{log log *»}-*/* 

with e an arbitrarily small constant. To make things more puzzling, 
the equality sign in (10) is, in the Marcinkiewicz-Zygmund example, 
replaced by the sign "smaller than," contrary to all expectations. 
To understand the inner mechanism of the phenomenon we must 
embark on the more ambitious undertaking and investigate, not only 
the upper limit (10), but also the manner in which it is approached. 
Again, for a real understanding and in order to find natural tools, 
such a problem must be considered in its greatest generality and not 
only for our very special random variables. However, we shall here 
describe the results for our particular case (but for arbitrary {an}). 

Our results can best be described by means of a convenient ter­
minology due to P. Levy: A nondecreasing sequence {<j>n} of positive 
numbers will be said to belong to the lower class, or in symbols 

(i3) Mec 
if> for almost all x (that is, with probability 1), there exist infinitely 
many n such that 

(14) Sn(x) > $n<t>n; 

the sequence {<t>n} belongs to the upper class (EU), if f or almost all x 
there exist at most finitely many n such that (14) holds. Every sequence 
{<t>n} belongs either to <£ or to V.A With this notation Kolmogoroff's 
result (10) states that 

(15) *. = {(2 + «) log log *}i/« ^ f li e <°' 
6 1/ if C > 0. 

Thus here the gap between the two classes is of the same order of 
4 This is a special case of the "null-or-one-law." It will be noticed that the state­

ment is by no means obvious: a priori one might expect that a sequence {#«} could 
satisfy the criterion for each class on a set of measure 1/2. 
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magnitude as 0 n . We shall not pause to describe certain improvements 
for special cases which are due to P. Levy [4, 1931], Cantelli [1933] 
and Cramer [1934], but pass to the illustration of the complete re­
sult. To begin with, we shall replace (11) by the slightly stronger 
condition 

(16) an =0(sn{loglogs f t}-3/2)é 

Of course, this condition is certainly satisfied if the an remain bounded 
or increase slowly; it holds in particular for the number-theoretical 
case (4). Now the following criterion holds (Feller [7, 1943]): if the 
constants {an} satisfy (16), then the necessary and sufficient condition 
that {4>n}GV (jQ is that5 

2 

(17) Z % n e x p { - ^ 7 2 } e e O D ) . 

The law of the iterated logarithm is, of course, contained in this cri­
terion and follows from (17) and the Abel-Dini theorem on infinite 
series. More generally the latter theorem and the conventional log­
arithmic scales show that the sequence 

<t>n = { 2 logo Sn + 3 logs Sn+ 2 l 0g 4 Sn + • • • 

+ 2 1og^15n+(2 + $)logrs»}1'2 

belongs to . £ (V) if, and only if, 5 ^ 0 (5>0) . 
In the special case (4) we have 4 = w, and (17) reduces to 

(19) £ - e x p { - ^ 2 } € C ( © ) . 
n 

The special result (19) (in an equivalent integral form) has been 
stated by Kolmogoroff (communicated without proof in P. Levy's 
book of 1937) and confirmed by Erdös [1942]. The most general con­
ditions under which a similar result holds will be indicated later. 

Several interesting corollaries can be deduced from (17). Thus it 
follows that for any constant M the sequence 

(20) 4>* = <*>n + M/<t>n 

belongs to the same class as {<j>n}- This is in a certain sense a "best" 
result and holds also in the general case [Feller, 1943]. Moreover, if 
{<t>n} G-C then ^ere are (f° r almost all x and every positive Ô) infi­
nitely many n such that 

5 Here and in the following Q and O stand for "converges" and "diverges," respec­
tively. 
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(21) <j>n < Sn(x)/Sn < tf>„ + «/*•• 

The criterion (17) is only a special case of a more general theorem, 
The next simplest case arises when the condition (16) is replaced 
by the weaker one 

(22) aw = 0(s„{log log *n}*/«). 

If (22) holds, we shall have {<£w} €zV (jQ if, and only if, 

2 

(23) E ~ *» exp { - 4Î/2 + MA<t>i/12} 
s2 

n 

where 

(24) M4 = E al 

I t is readily seen tha t under the stronger condition (16) the second 
term in the exponent in (23) has no influence on the convergence of 
the series, so that (17) is, in the strict sense, a special case of (23). 
We can now proceed to relax the hypothesis of our criterion. If in 
(22) the exponent 5/6 is replaced by 7/10, an additional term con­
taining $* will appear in the exponent of (23), and its coefficient will 
depend on ]LX.I#*- Generally, if the exponent in (22) is replaced-by 
( 2 r + l ) / ( 4 r —2), the exponent in the criterion will contain r terms 
and be a polynomial of degree 2r in <f>n. Letting r—>°o we obtain the 
following final form of our criterion, which contains all others as a 
special case: 

Define a number f = f(w) by the identity 

- l w 

(25) <t>n-sn X) ak tanh (akÇ). 

There exists a numerical constant rj > 1/100 such that f or all sequences 
satisfying the condition 

(26) an < 7j • 
{log log sn}i/« 

the criterion holds: {<t>n} Ç£V («£) if, and only if, 
2 

a ( n n ^ 
(27) Z ~7 *» ^ p < - f X) ** tanh (a*f) - £ log ch (a*f) > . 

In this general form the criterion is somewhat unhandy, but it 
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explains completely the breaking down of the law of the iterated 
logarithm when the condition (11) is not satisfied. 

3. Some unsolved problems. What happens when not even (26) 
is satisfied? The answer is unknown. Admittedly the question is 
somewhat artificial, since all "reasonable" sequences will satisfy even 
the strongest of our conditions, namely (16). However, considered as 
a special case of the general theory, the answer to the question would 
be of interest, for it would lead into new and unexplored domains. 
From special cases treated by P. Levy [1931 ], Marcinkiewicz [1939], 
Hartman [1941 ], and Feller (unpublished) we know that the asymp­
totic behavior of sums of independent random variables changes its 
nature completely when (26) (or its analog in the general case) is 
dropped. Our present tools are not sufficient to treat such cases. 
Natural methods would probably be applicable also to quite different 
problems linking the theory of probability to certain unexplored 
functional equations. 

Our theorems give precise theoretical information concerning the 
probable amplitude of the oscillations of Sn(x) as a function of n. I t 
would be of considerable theoretical and practical interest to have 
more information as to the frequency or wave-length of these oscilla­
tions. What can be said concerning the frequency with which Sn(x) 
changes sign? Many similar questions can be raised, but again very 
little is known in this direction. (However, in the special case (4) 
some interesting results were recently obtained by Erdös; they are 
not yet published.) These questions are related to the iterated log­
arithm, that is to say, they are of the measure-theoretic or "strong" 
type. However, there are many open questions of the "weak" type, 
which are really problems concerning distribution functions and can 
be formulated in terms of Fourier analysis. 

The central limit theorem gives us information concerning the 
average of Sn(x) for a fixed n. This information is useful, but in many 
practical cases (for example, in all cases with "optional stopping") 
we are interested not so much in Sn(x) as in the function 

(28) S*(x) = max Sk(x). 
£ - l , . . . , n 

I t would be of great theoretical importance to have a theorem analo­
gous to the central limit theorem and relative to S*(x). Once such a 
theorem is obtained, one will proceed to obtain estimates of the 
asymptotic error and statistical tests of significance of the same type 
as are now available for Sn(x). These remarks apply to the general 
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theory of random variables even more than to the present special 
case.6 

In the special case (4) the problem can be easily solved but, as 
frequently happens, the solution is of little use in the general theory. 
For the particular case (4) our problem is essentially equivalent to 
the classical problem of ruin, or physically, to the problem of the 
symmetric restricted random walk in one dimension with one absorb­
ing wall. The simplest method here seems to be that of difference 
equations, which also permits us to treat the more interesting problem 
of a random walk with two absorbing walls, say at k=0 and k=*r. 
The problem arises classically in connection with a player who wins 
or looses in each trial a unit amount and starts with a capital less 
than r : the game ends when the player has either lost his capital 
(Sn = 0) or if he succeeds in increasing it to r. Analytically one is led 
to a difference equation corresponding to the differential equation of 
diffusion 

(29) ut « uxx 

with a boundary value problem w(0, /)=w(r, / ) = 0 and appropriate 
initial values. As in the case of the differential equation, our problem 
can be solved by two methods (method of images or trigonometric 
interpolation). Identifying the two solutions leads to curious identi­
ties between certain sums of binomial coefficients on one hand and 
trigonometric polynomials on the other. Passing to the limit one 
obtains the familiar transformation formula for theta functions 
which is usually proved operating in the same way on the equation of 
diffusion.7 In the general case the difference equations are of no use, 
but Petrowski [1934] (cf. Khintchine's [1933] exposition) has shown 
that it is possible a t least to obtain some limit theorems by the 
direct use of differential equations. 

4. The general notion of random variables. In the simple example 
of §2, there were only two possible results of each individual trial, 
and therefore the random variables Xh could assume only two dis­
tinct values. In the general theory we shall consider perfectly arbi­
trary spaces. We consider first some empirical examples: throwing 
dice leads to a label space consisting of six points; in the case of the 
roulette each trial will result in a certain angle, and the label space 
consists of an interval 0gt^<27r; in the theory of diffusion the result 

6 For recent results connected with this problem, cf. Wald [1944]. 
7 These facts are doubtless known in the classical literature. Related arguments 

have been used by P. Levy [1931 ]. 
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of an observation is, theoretically, a point, and the label space con­
sists of a portion of the ordinary space ; in statistical mechanics each 
observation is represented by a point in the phase-space, and the 
latter is the label space. Frequently a certain function will be asso­
ciated with the points of the label space: in the case of games this 
function may represent the gain associated with the possible results 
of the experiment ; in the theory of diffusion it may be the distance of 
the particle from the origin; in statistical mechanics it may be the 
kinetic energy or the entropy. This is the picturesque empirical back­
ground for our abstract definitions; purely mathematical illustrations 
will be supplied in the next section. 

A label space will in the sequel mean an arbitrary space in which a 
probability measure is defined (that is to say an absolutely additive, 
non-negative measure such that the label space itself has measure 1). 
A random variable is a real-valued measurable function in the label 
space. How the probability measure has been obtained (or defined) is 
of no interest for our present purposes. 

We have now to define the fundamental notion of independent 
random variables. For that purpose we can again use the language of 
"repeated trials," although the notion can actually be defined in a 
more general way. As in §2 we shall consider an infinite sequence of 
trials and suppose that to the feth trial there corresponds the label 
space ©fc. In §2 all these spaces were congruent, each consisting of 
only two points. This, however, is by no means necessary, and the 
simplest applications actually lead to variable sequences of label 
spaces. The result of an infinite sequence of trials will now be repre­
sented by a sequence Pi, P2, • • • , where P* is a point of ©*. Thus to 
our infinitely repeated trials there corresponds a label space © whose 
points are represented by symbols P = ( P i , P2, • * • ) with P^E©*. 
In modern terminology, © is simply the combinatorial product of the 
spaces ©*, 

(30) © » ©! X ©2 X ©a X • • • . 

Since in each ©& a probability-measure has been defined, we can de­
fine probabilities in the product space © in the usual way by taking 
the product measures. This definition of the product measure is the 
mathematical equivalent of the empirical notion of independent 
trials. We shall from now on suppose that the ©* are arbitrary, and 
that in © (given by (30)) the product measure has been defined. 
Every random variable Xk(Pk) defined in ©* then automatically 
becomes a random variable in © ; any such sequence of random vari­
ables will be called a sequence of mutually independent random vari-
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ables. We shall again be concerned in particular with sums 

(31) Sn(P) = £ Xk(Pk). 
k~i 

The consideration of infinite product spaces (30) is in many cases 
most natural, but it means an unnecessary restriction. For example, 
the consideration of infinite product spaces led us in §2 to the unit 
interval in its dyadic representation. Clearly such a representation 
will not always be desirable, and it may be more convenient for many 
purposes to consider the unit interval itself as the directly given label 
space. A closer survey shows that the essential feature of statistical 
independence consists in a certain property of multiplicativity, and 
this consideration leads us to the following general definition (which 
contains the construction in product spaces as a special case). A se­
quence of random variables Xk defined in an arbitrary label space © 
will be called mutually independent, if f or any choice of N, bi and Ci 

N 

(32) Pr {bk < Xk < ck; k « 1, 2, • • • , N} » J[ Pr {bk <Xk< ck} ; 
fc«i 

here the letters Pr denote the measure of the set in © in which the 
inequalities within the braces are satisfied. 

The distribution f unction Vk(x) of Xk is defined by 

(33) Vk(x) = Pr {Xk^ x}. 

(In the case where Xk=f(t) is a function defined on the unit interval, 
the inverse of the distribution function can be interpreted as a re­
ordering of the values of ƒ(/) with preserved measure; in this way it 
has been used in real variable theory by Hardy, Littlewood, and other 
authors.) 

Now let Fn(x) denote the distribution function of the random 
variable Sn(x) defined by (31). If the Xk are mutually independent, 
the distribution f unction Fn(x) of the sum Sn(x) is given by the recurrence 
formulas 

(34) Fx(x) « Vx(x)t Fn+1(x) » f *Fn(x - y)dVn+1(y). 

The characteristic function (Fourier-Stieltjes transform) of a distri­
bution function V{x) is 

/

+00 

eUxdV(x). 
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With this definition the characteristic function of Fn(x) is simply the 
product of the characteristic functions of Vi(x), • • • , Vn(x). 

The central limit theorem, the ordinary (weak) law of large num­
bers, and some other limit theorems are of the weak type, that is to 
say, they describe only the asymptotic behavior of the distribution 
functions Fn(x). They can therefore be formulated in terms of an 
arbitrarily given sequence Vk(x) of distribution functions and the 
formulas (34) ; the notion of random variable and measure in the label 
space is, for the weak theorems, irrelevant. However, the strong the­
orems, like the law of the iterated logarithm and the strong law of 
large numbers, are strictly speaking measure theoretic. 

Before passing to examples, let us introduce a few definitions. 
The expectation of the random variable Xk is, by definition, 

ƒ
+oo 

xdVk(x), 
-oo 

provided the integral exists (is absolutely convergent). A simple com­
putation shows that the expectation of the sum Sn is given by 

(36) mn = MI + * • • + Mn. 

The variance of Xk is defined by 

2 f + ° ° 2 
(37) ak = I (x — iik) dVk(x), 

* / —oo 

again provided that the integral converges. I t is readily seen that the 
variance 

(38) sl= f (x - mn)
2dFn(x) 

of Sn is given by 
2 2 2 

(39) sn = <n + • • • + <rw. 

5. Examples. The following examples are intended to illustrate 
the notion of independent random variables and their sums by means 
of some of the simplest purely mathematical applications. At the 
same time they will show that our limit theorems can sometimes be 
applied with greatest ease to problems which are frequently treated 
in a much more complicated manner; in such cases the refinements of 
the limit theorems are apt to give much more precise results than 
other methods. 
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(a) Inversions. Among the ni permutations of the elements 1, 2, 
• • • , w, how many will exhibit exactly r inversions? 

Here the label space © consists of the n\ permutations; with each 
point of © we associate probability l/n\. Consider now an arbitrary, 
but fixed, permutation P. For £ = 1,2, • • • , w we define the value of 
Xk(P) to be the number of elements among 1, 2, • • • , ft — 1 which 
succeed the element k; in other words, Xk(P) is the number of inver­
sions in P which are produced by the element ft with regard to the 
smaller elements. The sum 

(40) Sn(P) = Xi(P) + • • • + Xn(P) 

is the total number of inversions exhibited by P. 
It is also possible to describe the situation in the terminology of 

independent trials; for that purpose we have to represent the label 
space © as an w-tuple product space, which means that we have to 
build the permutations step by step. We first write down the element 
1 ; for the next element, 2, we have two possibilities, namely to put it 
ahead or behind: accordingly, the label space ©2 corresponding to 
the second trial consists of two points, and we have to attribute to 
each the probability 1/2. For the third element we have three possi­
bilities (places), and in general, the label space ©& (£ = 1, 2, • • • , n) 
will consist of k points, each having probability 1/fc. The space © of 
all permutations is clearly the combinatorial product of these ©&, 
and the original measure (l/n\ for each point) is the corresponding 
product measure. It is also seen that the random variable Xk(P), the 
number of inversions produced by ft, is defined in ©A? without regard 
to the other trials. Our Xk are therefore independent random vari­
ables, but this could also be checked directly in © using the defini­
tion (32). 

According to construction, Xk assumes the values 0,1, • • • , ft — 1, 
each with probability 1/ft. Therefore (cf. (35)~(39)) 

(41) M» « (* - l)/2, A = (ft' - D/12 

whence 

(42) mn = n(n — l)/4 ~ n /4, sn = (In + 3n — 5n)/72 ~ n /36. 

The central limit theorem (cf. the next section) shows that the 
average number of inversions is mn\ that the number of permutations f or 
which the number r of inversions satisfies 

(43) (w2/4) + (xi/6)n*l2 < r < (w2/4) + (x2/6)n*'2 



i945l THE FUNDAMENTAL LIMIT THEOREMS IN PROBABILITY 815 

is asymptotically given by n\ multiplied by $(#2)— $(#1) (cf. (8)). Inci­
dentally, known estimates of the asymptotic error in the central 
limit theorem permit us to give also more precise estimates for (43). 
Here we wish only to point out that the result is a trivial consequence 
of the central limit theorem. 

(b) Cycles. How many permutations of the elements 1, 2, • • • , n 
exhibit exactly r cycles! 

In a self-explanatory way we begin to write the permutations in 
the form l—>ei—»e2--» • • • ; the first cycle is completed when e, = l ; 
then we start with the smallest of the remaining elements and con­
tinue in the same way. Thus the permutation 1—»3—»4—>1; 2—>2; 
5-->7—>8—»6—>5 is a permutation of the elements 1, • • • , 8 with three 
cycles. Now for any permutation P we define Xk(P) to equal 1 if 
a cycle is completed at the fcth place, and Xk(P)~0 otherwise 
(k = 1, • • • , n). Again the Xk(P) form a set of mutually independent 
random variables, and their sum (40) now gives the total number of 
cycles in P . From the way in which the permutations are built it fol­
lows trivially that 

Pr {Xk~l\ - l / ( » - * + l ) f 
(44) , v 

Pr {X* = 0} « ( » - * ) / ( » - * + l ) , 

(» - k)/(n - k + l ) 2 

• • + l/n ~ log n, 

log n. 

Therefore, according to the central limit theorem, the average number 
of cycles is mn; asymptotically, the number of permutations with r cycles, 
where 

(47) log n + *i(log n)w < r < log n + *2(log n)ll\ 

tends to $(#2) —$(#1). Again more precise estimates are readily avail­
able. 

If, instead of considering all cycles, only cycles of a prescribed 
length are taken into account, the method does not apply without 
modification: it is then necessary to introduce certain dependent 
random variables. 

so tha t 

(45) 

and 

(46) 

(ik = l/(ü 

mn = 

2 
Sn = 

\ — k + 1), <rk 

1 + 1/2 + 1/3 + 
» n ~ k 

èi (» - * +1)2 
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(c) Runs. We shall now consider what is known as Bernoulli 
trials. The label space is the same as in §2, that is to say each point 
is represented by an infinite sequence of symbols H or T\ only 
this time we shall associate with H an arbitrary probability p (not 
necessarily 1/2), and with T the complementary probability q = 1 — p. 
For example, we may consider the ordinary decimal representation of 
the unit interval with its natural measure, calling the digit zero II; 
then £ = 1/10. By definition, anH^run of length r is an uninterrupted 
sequence of at least r symbols H. A run of length r+1 is then automati­
cally a run of length r\ and we shall agree to say that a run of length 
2r, 3r, • • • contains 2, 3, • • • runs of length r. This is not strictly 
the usual nomenclature, but it is for our purposes by far the most 
convenient one. Moreover, the numerical differences arising from the 
change in the usual definition are perfectly negligible. Also, it requires 
only trivial modifications to adapt our developments to the standard 
definitions. 

For any point P of the label space let Xi(P) denote the num­
ber of trials before the completion of the first run of length r. Then 
Xi is a random variable which may assume any of the values 
r, r + 1, • • • (the probability that no run of length r occurs is zero). 
The distribution function Vx(x) of Xi is well known.8 Next letX2(P) 
denote the number of trials from the completion of the first run to 
that of the second run. Clearly X2 is a random variable which is inde­
pendent of Xi but has the same distribution function. Proceeding in 
the same way, we may define n independent random variables 
Xi} • • • , Xny all having the same distribution function and such 
that their sum Sn (cf. (40)) will give the number of trials from the be­
ginning to the completion of the nth run. 

The usual problem (gaining new importance in applied statistics) 
is to find the probability of having in N trials k runs or more (each of 
length r). In our notations this probability is 

(48) Pr { S f c g t f } , 

and the central limit theorem permits to evaluate this probability in 
the most trivial manner and with all desirable acuracy. Thus we 
have obtained, as a perfectly trivial corollary, the famous theorem to 
the effect tha t the number of runs is approximately normally dis­
tributed.9 

(d) Partial sums of the exponential series. This example is, even 
8 Cf., for example, Uspensky [1937]. 
9 More interesting and much deeper results concerning the asymptotic distribu­

tion of runs have been obtained by Levene and Wolfowitz [1944]. 
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formally, independent of the notion of random variable. Let a>0 be 
a constant, and define a distribution function V(x; a) depending on 
the parameter a by 

(49) V(x; a) = « r - £ - • 

This is the familiar Poisson distribution. Let, for every n, Vn(x; a) 
= V(x; a) and define new distribution functions Fn{x; a) by (34). A 
trivial computation shows that Fn(x; a) = V(x; no). Accordingly, by 
the central limit theorem, 

(50) Fn(x\ a) ~ $ ( x — na\ 

(no)11*/ 

With a slight change in notation this result can be restated by saying 
that, for large values of X, 

(51) <rx E — ~ * W ) - * ( ' i ) . 
[X+*iX1/2] k\ 

Again, known asymptotic estimates for the central limit theorem 
permit us to give, without computation, more precise estimates (cf. 
Kac [1942]). 

6. The central limit theorem. Returning to the general theory we 
shall now consider an arbitrary sequence of mutually independent 
random variables Xk and their partial sums 

(52) Sn - Xi + • • • + Xn. 

Using the notations defined in (36), (39) and (8), we may say that 
the problem of the central limit theorem in its classical version is to 
establish the conditions under which the "reduced" random variable 

(53) Sw* = (Sn ~ mn)/sn 

willy in the limit, be normally distributed,10 by which is meant that 

(54) Pr {£ < Si < v} -> *0i) ~ *(Ö. 

Needless to say that the purely analytical content of the prob­
lem has not been understood from the beginning. For more than one 
hundred years a great many mathematicians have been working on 
the problem discovering many special cases to which the theorem ap­
plies and gradually establishing, and relaxing step for step, sufficient 

This formulation presupposes the existence of second moments (34). 
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conditions under which the theorem holds. To less critical minds the 
law appeared as a universal law or, occasionally, as a law of nature. 
The first special case where the law does not apply has been dis­
covered by Cauchy, but less than ten years ago a respectable mathe­
matical journal contained a proof that the central limit theorem ap­
plies without restrictions. Great analytical progress has been made 
by Ljapunov, but the modern era in the theory may be said to date 
from the discovery by the Finnish mathematician Lindeberg [1922] 
that the central limit theorem certainly holds if sn—»oo and if for every 
€ > 0 

(55) lim *;2 £ f (* ~ »k)*dVk(x) = 0. 

This is the famous Lindeberg condition; it is of importance not only 
because it is of remarkable generality, but still more because it 
turned out to be a useful tool for many purposes. For example, it 
has been used by Kolmogoroff in the theory of stochastic processes 
[3, 1931]. As for its generality it may be stated that, somewhat 
surprisingly, it turned out later (Feller, [1935 ])n that Lindeberg1 s 
condition (55) is not only sufficient, but also necessary for the validity 
of the central limit theorem in its classical version (which was the only 
one considered at that time). 

At first sight this theorem would appear to state that Lindeberg's 
condition completely solves the problem. This, however, is far from 
being true. Why are the random variables Sn in (53) normed just by 
means of the numerical sequences {mn} and {$»}? This is a tradi­
tion which goes back to pre-Laplacian times, and has gradually taken 
root so firmly that it has tacitly been looked upon as the only pos­
sibility. In reality this convention has done much harm. Admittedly 
it is natural and useful in most standard applications. Nevertheless 
its indiscriminate use has obscured the true content of the laws of 
large numbers. Worse than that, the failure to understand the arbi­
trariness of the special norming (53), and of the use of moments in 
general, has lead to many misunderstandings and to lamentable use­
less discussions (like the endless controversy connected with the so-
called St, Petersbourg paradox). For real progress it is necessary to 
develop the most natural tools, which in turn is possible only by find­
ing the most general formulation of the problem and freeing it from 
all artificial restrictions 

Accordingly, we shall say that a sequence { Vk(x)} of distribution 

u The proof will be found also in Cramer's booklet [1937]. 
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functions obeys the (generalized) central limit law if there exist two se­
quences of constants {an} and {bn} such that the convolutions Fn(x) 
defined by (34) satisfy the relation 

(56) limFn(anx + bn) = * (*) ; 

in terms of the corresponding random variables Xk this means that 
the random variable 

(57) S* - (Sn - bn)/an 

is, in the limit, normally distributed (satisfies (54)). In this way we 
have freed ourselves not only from the arbitrary classical norming 
(53), but also from the restriction that the moments (37) should 
exist: in the present formulation the definition applies to an arbitrary 
distribution function. Only the case where 

(58) an —> » , an/an+i -> 1 

presents interest,12 and to avoid trivialities and clumsy formulations, 
we shall restrict our considerations to that case. The generalized cen­
tral limit problem has been completely solved by the following 

THEOREM. The sequence {Vk(x)} obeys the central limit law if, 
and only if, there exists a sequence qn-~» oo such that simultaneously 

(59) qZ2 E f xdVk(x) -> oo, è f dV^x) -> 0-
*»1 J \x\<qn fc-l«J \z\<qn 

In that case one may put 

(60) al=jt,\f xdVk{x) - { f xdVk(x)\ \ 
*-l W \x\<qn \J \x\<qn ) ) 

and define bn by 

(61) f (* - Pn)dVh(x) - 0; bn = £ fa. 
J \x\<ak k~l 

With the constants so defined (56) will hold (Feller [1935]).18 

12 According to a theorem of Cramer [1936], the central limit theorem can not 
hold with any bounded sequence [an\ unless all the variables {Xn\ are themselves nor­
mally distributed. The case where the other relation in (58) does not hold similarly 
leads to a trivial situation. 

13 Here and in the sequel it is supposed that the origin has been chosen in such a 
way that Vk(+0)*zc[t V*( —0)^1— q where q is some constant (arbitrarily small). 
This will almost always be the case and represents no restriction whatsoever. If, in 
particular, £=*l/2, the origin is the so-called median. 
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Whether or not a sequence {qn} satisfying (58) and (59) exists 
can be decided by means of a simple criterion, and the constants qn, 
if they exist, can be computed explicitly in a trivial way. 

It follows, in particular, that for given sequences { Vn(x)}, {an}, 
j j n s 0 } the relation (56) will hold if, and only if, simultaneously141 f or 
every e>0 

(62) lim £ f dVh(x) » 0, 

(63) lim an' Z j f xdVk{x) ~\ ( xdVk(x)\ 1 = 1 , 

(64) lim an1 E f *d7*(*) = 0. 
»->«> fo-l»/ | * | < a n 

(In most practical cases the quadratic term in (63) is too small to be 
of influence.) 

As the simplest example where the generalized, but not the clas­
sical, central limit theorem applies we may consider the special case 
where all Vk(x) are identical: 

(65) Vk(x) s V(x). 

In this case the central limit theorem applies if, and only if, 

(66) f dV(x) « oL~* f x2dV(x)\ 
J \x\>z \ J \x\Sz J 

as z—» oo ,16 This criterion shows in particular that the central limit 

14 Cf. Feller [1935]. Alternative proofs have subsequently been given by Mar-
cinkiewicz [1938], Gnedenko [l, 1939] and Doblin [2,1939]. If the terms of the series 
in (64) are replaced by their absolute values, the quadratic terms in (63) may be 
omitted. The proof of the sufficiency of this set of (slightly stronger) conditions will 
be found in Cramer's booklet [1937]. Simultaneously with Feller and in more proba­
bilistic terms, P. Levy [6, 1935, and chap. 5 of his book of 1937] has given the 
following solution of the central limit problem which, in a sense, should be equivalent 
to the second of Feller's theorems of the text: Si chacune des variables Xk est indivi­
duellement négligeable devant la dispersion de la somme w>n» la condition nécessaire et 
suffisante pour que Sn dépende d'une loi d'un type généralisé peu different de celui de 
Gauss est que le plus grand de \Xk\ soit négligeable (négligeable veut dire négligeable en 
probabilité, c'est-à-dire très petit, sauf dans des cas très peu probable). For further re­
sults cf. Raikov [2, 1938]. 

15 This particular case has been discovered simultaneously by Khintchine [6, 
1935], P. Levy [6, 1935] and Feller [example (a) in 1, 1935]. 

file:///x/Sz
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theorem may apply even if the second moment does not exist (so 
tha t the classical formulation of the theorem would break down). 
In such cases the norms a2

n will increase more rapidly than n. I t 
was the failure to observe the possibility of similar phenomena in 
connection with the law of large numbers which led to the discussions 
of the St. Petersbourg "paradox"; within the analytical theory of 
limit theorems the latter does not present the slightest difficulty. In 
the example (65) the Lindeberg condition (55) loses sense if the 
moments a2 are infinite. However, it is easy to construct examples 
which look perfectly classical in the sense that moments of arbi­
trarily high orders exist, and for which the classical central limit 
theorem breaks down simply because the norming (53) is unnatural 
and must be replaced by another one. (For examples cf. Feller, loc. 
cit.) 

7. Generalizations. The central limit problem was the starting 
point of many investigations. To begin with the simplest, the condi­
tions can be generalized to various cases of convergence to distribu­
tions other than the normal (Bawly [1936], Gnedenko [l , 2, 1939], 
Gnedenko and Groshev [1939], P. Levy [8, 1936], Marcinkiewicz 
[l, 1938]); such questions are related to the nature of boundary 
values of analytic functions. More interesting and deeper results 
concern cases in which the central limit theorem does not hold. The 
classical example is furnished by the Cauchy-distribution 

(67) Vk(x) = V(x) = 1/2 + w-1 arc tan x; 

here 

(68) Fn(nx) = V(x). 

The Gaussian and the Cauchy-distributions are the oldest ex­
amples of a stable distribution, that is to say of a distribution func­
tion satisfying a functional relation of the form V(x) * V{x) = V(ax),1* 
where a is a constant. The systematic study of stable distribu­
tions has been initiated by Pólya [1923]; the most general form 
of the Fourier-transform of stable distributions has been obtained 
by Khintchine and P. Levy [1936] (cf. also P. Levy's book of 
1937). More generally, Khintchine has obtained the totality of 
solutions of the functional equation V(x) * V(x) = V(ax + b). Such 
distribution functions are the only ones which occur as limits of 
distribution functions of random variables of the form (57). The 
stable distributions are a subclass of a much wider and much 

The star denotes the operation of convolution, defined in (34). 



822 W. FELLER (November 

more important class of distribution functions, the so-called in-
finitely divisible laws. A distribution function F(x) is said to be 
infinitely divisible if it is the convolution of an arbitrarily large num­
ber, n, of distribution functions: F(x) = Fi(x) * • • • * Fr(x) where 
with increasing n the components Fk(x) (fe = l, • • • , n) tend to the 
unitary distribution (which equals one for x>0 and zero for x<0).17 

Roughly speaking, the infinitely divisible distributions represent in­
tegrals of random variables and are therefore intimately connected 
with the theory of stochastic processes. The most general form of 
infinitely divisible distributions has been established by Kolmogoroff 
[1932] and P. Levy [1934].18 It is unfortunately impossible to de­
scribe the ties which link the infinitely divisible laws to many other 
topics: partial differential and more general functional equations, the 
theory of semi-groups, the arithmetic of distribution functions (in­
augurated by P. Levy and studied by Khintchine, Raikov, Gnedenko 
and others), and so on. Here it must suffice to mention the most 
direct connection with the central limit theorem which is furnished by 
the following beautiful theorem of Khintchine [8,1937] : In order that 
V(x) be the limiting distribution of a subsequence Snk of a sequence 
of form (57) it is necessary and sufficient that V(x) be infinitely divisi­
ble.19 

Returning to the central limit theorem itself, we may briefly 
touch on the important question concerning more precise estimates 
of the asymptotic error involved in (54). That this question is by no 
means simple is seen from the great number of papers treating the 
accuracy of the Gaussian distribution in the trivial special case of the 
binomial distribution.20 The most general and most satisfactory 
asymptotic estimates now available are furnished by the well known 
asymptotic expansion due to Cramer [1928, 1937]. Quite recently 
P. L. Hsu [1945] has shown that Cramer's proof can be considerably 
simplified by introducing a Cesàro type kernel instead of M. Riesz' 
singular kernels.21 At the same time it is seen that the same method 
can be used to obtain asymptotic expansions in much more general 
cases. It follows from these theorems that the difference between the 

17 For an account of the theory of infinitely divisible laws cf. P. Levy's book 
[1937]. 

18 Alternative proofs by Khintchine [P, 1937] and Feller [5, 1937]. 
19 For further results concerning subsequences cf. Doblin [l, 3, 1938-1939], 

Gnedenko [l, 2, 1938], 
20 For quite recent results in this special case cf. S. Bernstein [1943 ]. 
21 The use of Cesâro kernels has actually been suggested by Berry [1941 ], who has 

used this method to obtain very precise numerical estimates for the maximum of the 
difference between the distribution Fn and the corresponding Gaussian distribution. 
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two sides in (54) is usually of the order of magnitude of n~~l/2. Clearly 
such a statement has practical meaning only if £ and rj are of moderate 
magnitude. For large values of £ obviously <E>(£)'̂ 1, and the relation 
(54) expresses a triviality. Actually the case of large £ (or of £'s in­
creasing with n) is of great importance in statistics; moreover, more 
precise estimates for this case are essential for many theoretical in­
vestigations, for example, in connection with the iterated logarithm. 
Several special sequences Vk(x) have been investigated from this point 
of view. General results for the case of equal components (65) have 
been obtained by Cramer [1938]; they have been generalized by 
Feller [6, 1943], but much more remains to be done in that direction. 

A quite different type of open question connected with the cen­
tral limit theorem has been discussed in §3. 

8. The iterated logarithm. We consider again an arbitrary infinite 
sequence of mutually independent random variables Xk defined in 
arbitrary space. For example, the space may be the unit interval, 
and22 

(69) Xk = sign sin(2*7r#); 

in that case the distribution function Vk(x) defined by (33) is a step 
function with jumps of magnitude 1/2 a t x = ± 1. For simplicity we 
shall consider only individually bounded variables Xk] standard 
methods of truncation permit us to generalize all results, but the 
essence of our theorems will become clearer in the more restricted 
formulation. For bounded variables the moment (35) exists. Now the 
variable Xk—pk has a vanishing first moment, and therefore we can 
always by a simple change of notation achieve that 

(70) ixk m 0. 

Accordingly, we do not lose any generality by assuming from now on 
that (70) holds. 

As before, the study of the partial sums 

(71) S„ - Xi + • • • + Xn 

depends on the numbers ak and sn defined by (37) and (39), respec­
tively. With these notations, Kolmogoroff's law of the iterated logarithm 
states in the most general case that with probability 1 

(72) lim sup r— = 1, 
Sn{2 l0gl0g$n}1 /2 

provided only that 

22 Cf. Rademacher [1922]. 
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(73) L.U.B. | Xk| - o(sn{log log sn}-"*). 

Again we can obtain more general and more precise results using 
the terminology of upper and lower classes introduced in §2. The 
definition given there applies without change if the numbers sn in 
(14) are interpreted according to the general definition (39). To ob­
tain the first generalization of KolmogorofFs law we have simply to 
replace (16) by23 

(74) L.U.B. | Xk| = 0(sn{log log s„}~3'2). 

If the variables Xk satisfy (74), then the necessary and sufficient condi­
tion that 4>nCiV (JQ is that 

2 

(75) Z ^ 0 « e x p { ~ ^ 2 / 2 } G C ( 0 ) . 

In particular, if all Xk have the same distribution function (as in 
the case (69)), the criterion (75) assumes the form (19). I t can be 
shown that condition (74) is the best possible of its type. As in §2 
we can proceed to relax it step for step: the exponent in (75) will again 
be replaced by increasingly more complex expressions. Now the ex­
ponents encountered in §2 were even polynomials in 0n , but this is not 
true in general. I t remains true only in the case of symmetric vari­
ables, tha t is to say in the case where the function — Xk has the same 
distribution function as Xk- In §2 we passed directly from (16) to (22). 
In the general case, if the exponent 3/2 in (74) is replaced by 1, the 
exponent in (75) must be replaced by a certain polynomial of third 
degree. In the same way, if the exponent in (74) is replaced by 
(m + 2)/2m1 we shall have a polynomial of degree (rn + 1) in 4>n 

figuring in the criterion analogous to (75). Passing to the limit we ob­
tain the most general and most precise statement in the following 
form: 

There exists a universal contant rj> 1/100 such that for all sequences 
{Xk} with 

(76) L.U.B. | Xk | < rjsn{log log sn}~w 

the criterion holds: {$n} £ V CO if, and only if, 
2 

(77) E 7 i a p $ , W e e ( 0 ) ; 

23 The iterated logarithms in conditions (74) and (76) can be replaced by other 
functions, and the conditions restated in a slightly more general form; the above 
special form has been chosen only for comparison with KolmogorofFs condition. 
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here $*(#) is a power series whose mth coefficient depends only on the 
moments of X\, • » * , Xn up to the order m. 

I t can be shown that $n(x) is majorated by a certain geometric 
series, and other more precise estimates are available; we refer for 
such further results to Feller [7* 1943]» 

I t seems that only quite artificial sequences {Xn} will satisfy 
(76) but not (74). Thus the rather complicated criterion (77) can, for 
all practical purposes, be replaced by the exceedingly simple and elegant 
criterion (75). The theoretical importance of the general criterion lies 
in the fact that it helps us understand the actual mechanism which 
makes so amazingly general classes of functions exhibit an asymptotic 
behavior in accordance with the simple scheme given by (75). The 
individual terms in the power series in (77) are closely related to the 
asymptotic error terms for the tails of the Gaussian in the central limit 
theorem. In this sense (77) reveals the increasing complexity as we 
approach the outer boundaries of the domain in which the central 
limit theorem holds. 

We are naturally led to the question of what happens if (76) does 
not hold. This problem is not answered and presents a challenge for 
the very reason that it leads beyond the central limit theorem into a 
domain where we still lack natural tools. I ts solution would auto­
matically give necessary and sufficient conditions for the strong law 
of large numbers (cf. §9), an elusive problem which has been many 
times attacked without success. Also, our problem would apply to 
several interesting stochastic processes exactly as our generalization 
applies to ordinary diffusion. Some interesting results leading be­
yond (76) have been obtained by Hartman [1941 ] for the case where 
all the random variables Xk are normally distributed (not necessarily 
with the same variance). A very special case studied both by P. 
Levy [l , 1931] and Marcinkiewicz [1939] shows that the asymptotic 
behavior of sequences not obeying (76) is very different from that 
which we have considered so far. This is also borne out by the precise 
criterion obtained by the writer for the case where all the Xk have 
the same distribution function (not yet published). 

Time and space unfortunately do not permit more than brief 
reference to Gnedenko's recent investigations related to our problems 
but pertaining to the case of continuous stochastic processes (like 
homogeneous diffusion). 

9. The laws of large numbers. The implications of the so-called 
laws of large numbers are considerably weaker than the statements 
of the central limit theorem or the law of the iterated logarithm, but 
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these weaker implications naturally hold under much more general 
conditions. The distinction between weak and strong laws of large 
numbers is the same as between the central limit theorem and the 
iterated logarithm: the weak laws concern only the asymptotic be­
havior of convolutions of distribution functions and can be formu­
lated without appeal to random variables. The strong laws, on the 
contrary, are of measure-theoretical nature. In classical textbooks 
only the weak law (in a special form) is proved; nevertheless the 
strong laws are of much greater importance in statistics, games, and 
other applications. In many books the weak law is proved, the strong 
one used. 

Let {Xk} be a sequence of mutually independent random vari­
ables with distribution functions Vk(x) and expectations JU& (cf. (33) 
and (35)). Let again Sn denote the nth. partial sum of {X&}, and 
w„=/z i+ • • • +juw its expectation (if it exists). In the restricted clas­
sical form one would say that the weak law of large numbers holds if f or 
every positive e 

(78) Pr { J Sn - m* | > en / -> 0. 

In terms of the distribution functions (34) this means that 
Fn(nx+mn) tends to the unitary distribution function. Necessary 
and sufficient conditions for (78) to hold have been established by 
Kolmogoroff [1929]. I t must be understood that the formulation (78) 
originates with the classical theory of games, where all Xk have the 
same distribution function. In that particular case the special norm-
ing by the factor n makes sense, since then mn and "the total amount 
at stake" are proportional to n. In general, however, the factor n is 
perfectly arbitrary. The failure to understand this arbitrariness has 
led to many unnecessary discussions and "paradoxes." Also, the law 
of large numbers has frequently been regarded either as a law of na­
ture or as a consequence of the definition of probability. In this sense 
its universal validity has been assumed and it has been applied to 
cases where it can easily be shown not to hold. For example, in the 
so-called St. Petersbourg problem the moments fik do not exist: by a 
series of misinterpretations and treating fik as a number (assuming, in 
particular, that oo — oo = 0 and that all passages to limits may be 
interchanged), the classical theory managed to "prove" a mathemati­
cal theorem which contradicts common sense. Actually there is no 
problem to analyze the asymptotic behavior of the sums Sw in the St. 
Petersbourg case and thus to determine what used to be called "fair 
price." To analyze the real mathematical problem we must proceed 
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as in the case of the central limit theorem and free the theory from 
all artificial restrictions. Accordingly we shall say that the sequence 
{Xk\ obeys the {generalized) weak law of large numbers if there exist two 
sequences of constants \cn\ and \pn\ such that for every positive e 

(79) Pr { | S n - c n | >epn}->0. 

The necessary^ and sufficient condition for (79) to hold is that 

(80) 

(81) 

the constants cn 

(82) 

Ê f dVh(x) = o(l), 

Ê f xdVk{x) = o(pl); 
1-1 «J |s |<P„ 

can then be defined by 

* - l J \x\<pn 

This theorem25 completely solves the problem of the weak law of 
large numbers. Despite several at tempts the problem of the strong 
law still remains open. We say that the sequence {Xk} obeys the strong 
law of large numbers if there exists a sequence of constants {cn} such 
that with probability one 

(83) Pr { | S n - < ; n | A * } - - » 0 . 

There exists a famous sufficient condition for this law which is due to 
Kolmogoroff [1928]. For its formulation we shall suppose that the 
origin has been chosen as described in footnote 13. Kolmogoroff1 s con­
dition then consists in the simultaneous cover gen ce of the two series 

(84) 2 f dVk(x) 
k~\J \x\>k 

and 

(85) Z -. 
94 The condition is necessary only if the origin has been chosen as described in 

footnote 13, but sufficient even without this restriction. 
15 Feller [3, 1937]. For alternative proofs cf. Marcinkiewicz [1938], Gnedenko 

[1939], Doblin [3, 1939]. Several special cases (in particular for non-negative random 
variables) have been treated previously by Khintchine [7, 1936], Bawly [1936], 
Plessner [1936], and, perhaps, others. 
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where 

(86) bn~ f %HVn(%). 
J \x\<n 

The condition (84) is clearly also necessary. Other conditions, in part 
necessary and in part sufficient, can easily be obtained from the law 
of the iterated logarithm. However, up to now all attempts have 
failed to replace (85) by a weaker condition which is also necessary.26 
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