NOTE ON APPELL POLYNOMIALS
I. M. SHEFFER

An interesting characterization of Appell polynomials by means of
a Stieltjes integral has recently been given by Thorne.! We propose
to give a second such representation, and to extend the result to the
case of sets of polynomials of #ype zero, of which Appell sets form a
subclass.

Appell sets may be defined by either of the following equivalent
conditions: {Pa(x)}, =0, 1, - - -, is an Appell set (P, being of de-
gree exactly #) if either

(i) P! (x)=Pﬂ—1(x)! n=1,2,.--,
or

(ii) there exists a formal power series 4 (£) =2 an" (a070) such
that (again formally)

A(ets = i P,(x)tm

The function 4 (¢) may be called the determining function for the set
{P,.(x) } The essence of Thorne's result is the following:

THEOREM OF THORNE. A polynomial set {P.(x)} is an Appell set
if and only if there exists a function a(x) of bounded variation on (0, )
with the following properties:

(i) The moment integrals

o = f wrda(x)
0

all exiss.

(ii) po>=0.

(i) [P (x)da(x) =8, 8pr=1 for n=r, 8,,=0 for n=r.
And for the set {P,(x)} the determining function A(t) is given by

0= [Su] <[ o]

The Stieltjes integral characterization that we now give will be seen
to be essentially different from that in (iii) above.

THEOREM 1. A polynomial set {P,.(x)} is an Appell set if and only
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if there is a function 3(x) of bounded variation on (0, ) with the follow-
ing properties :
(i) The moment constants

(1) b = f " andB()
all exist.
(ii) bo=0.
(iii) Forn=0,1, - - -,
geadl
2 P.(x) = LAY
) @=f 8(0).

If (i) and (ii) hold, then P,(x) as given by (2) exists for each =,
and is a polynomial of degree exactly n. Moreover, differentiation
under the integral sign is permissible, so that P,/ (x) =P,_i(x); that is,
{P,.(x)} is an Appell set.

Now suppose {Pn(x) } is an Appell set, and let 4 (¢) be its determin-
ing function: 4 (£) =)_=a.t*. Define the sequence {b,} by

b, = nla,.

By a theorem of Boas? there is a function 8(x) of bounded variation
on (0, ©) whose moment constants are {b,.} ; and since a0, there-
fore by#0. If we denote the right side of (2), which exists, by Q.(x),
then {Qﬂ(x)} is an Appell set. Since (formally)

2 Qu(2)ur = fw

0

e =HOGR(f) = e'“‘f e“tdp(s),

0
the determining function for {Qa(x)} is

A*(w) = fo "emap(n = i{ fo wt“dﬂ(t)}g - ?b%

= D aur = A(u).
It follows that {Q.(x)} = {Pa(x)}, so that (2) holds.

COROLLARY. The determining function for { Pa(x)} is

©

© b“
3) A(u) ==f e“dB(t) = Y, — un

on!

2 Widder, The Laplace transform, p. 139. This result of Boas is stated for real se-
quences, but it extends immediately to complex sequences.
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Let {I,(x)} be the Appell set
4 I.(%) = x*/n!;

then (2) can be written
(%) P.(x) = f wI,.(x+ )dB(@).
0

Note that I4(0) =1, I,(0)=0 (#>0); it is this property that makes
the determining function 4 (¢) so simply expressible in terms of the
moment constants {,}. It is easily shown that in relation (5) the
polynomials I,(x) can be replaced by any other Appell set, by a suit-
able change in the function 8(¢). However, the determining function
A(2) is now not so easily expressed through the moment constants
{b.}. In fact, if {Qa(x)} is the Appell set defined by

(©) 0 = [ "1.(s+ i)
then
™ Pu(@) = [ 0uta+ 1380,
0
where the function 4 (z) for {P,.(x)} is given by
8 A —_ zt zug, d = S - n’
® @ = [ e [ erarian) = T
with
9 an = (1/n'){6nbo + Cagbnabs+ - - - + Cn,ncobn}-

Here {b.}, {c.} are given by
(10) b, = f 2*dB(x), Cn = f xmdy(x), n=20,1--+.
0 0
We turn now to sets of type zero. The polynomial set {P.(x)} is

of type zero? if either of the following equivalent conditions holds:
(i) Formal series

A1) A@) = S ar (a0 0),  HE) = > bt (hy 5 0)

31. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J.
vol. 5 (1939) pp. 590-622.
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exist for which (formally)
(12) A)esE® = > P(x).
0
(ii) An operator L[y(x)] of form

(13) Lly@®)] = :Zlnywx) (1 = 0)

exists such that
(14) L[P,(%)] = P._i(%), n=12,+--.
If L(¢) is the series

(15) L) = f: Latm,

then H(¢) and L(¢) are (formally) inverse functions:
(16) L(H®) = HL®) = t.

All polynomial sets satisfying (14) will be said to be associated
with the operator L. Sets associated with a given L are distinguished
one from another by their determining function A (¢) appearing in (12).
Associated with a given L there is a unique set Bn={Ba.(x)} for
which By(0) =1, B,(0) =0 (#>0). This set we call the basic set for L;
its determining function is 4 (¢)=1.

THEOREM 2. In order that the polynomial set {P.(x)} be a set asso-
ciated with the operator L it is necessary and sufficient that there exist a
function 3(x) of bounded variation on (0, =), with the following proper-
ties:

(i) The moment constants {b.} for B(x) all exist.

(ii) bos=0.

(iii) Forn=0,1, - - -,

(17) Pulx) = f " Bo(x + 0dB(0),

where { Ba(x)} is the basic set for L.

COROLLARY. The determining function A(t) for {P.(x)} has the ex-
pression

(18) a0 = [ "m0 (),
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which is equivalent to

(19) ALR) = f

0

0 0 b”
evsdf(u) = Y, — z™
0 n!

If conditions (i), (ii) hold, it is clear that {P,,(x)} as given by (17)
is a set associated with the operator L. Now let { P.(x)} be a set rela-
tive to an operator L; to show that (i), (ii), (iii) hold. Let 4 (¢) be the
determining function for {P,(x) } , so that we have relation (12). Since
A and L are given, the function 4(L(z2)) is known; let its (formal)
power series be

(20) A(L()) = i ak am,

Now define {b,} so that b,=n'a¥, and let B(f) be the function of
bounded variation on (0, « ), guaranteed by the Boas theorem, whose
moments are {b,,}. With this B8(¢), the right side of (17) defines a
polynomial set {Qn(x) }, associated with L, whose determining func-
tion is seen to be the function 4 (¢) given by (18). As (18) is carried
into (19) by the transformation z=H(¢) (and therefore ¢=L(32)), it
follows that {P,.}, {Q.} have the same determining function 4 (¢),
and are therefore the same set. Hence (17) holds.
In Theorem 2 the representation (17) can be replaced by

(21) P,(x) =f On(x + 8)dB(@),
0
where {Qn.(x)} is any polynomial set associated with L; but in this

case the determining function 4 (¢) for {P,.(x)} has a more compli-
cated representation than (18) or (19). In fact, if we write

(22) 0u(a) = f “Bu(x + Ddv(),

it is readily shown that

(23) a0 = [ [ emron i),
0 0
or, what is equivalent to this,
ey ac@) = [ [ esrorayisw = T aten
0 0 0

where

(25) an = (1/n1) {cabo + Ca16aibs + + + + + Cuntobn}.
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Here { b,.}, {c,.} are the moment constants for 8(2), ¥ () respectively.
We close with two observations.
REMARK 1. The Thorne theorem carries over to polynomial sets of
type zero; we have only to replace the condition (iii) of that theorem
by

(26) [ Lolp@lia = b
0
where LM =L, L, ... are the iterates of L. Also, the determining
function 4 (¢) for {P,,(x)} is given by
L) —1
@7 AQ) = [ f ewwda(x)] :
0

or, by the equivalent expression,

(28) AL() = [ fo meuda(x)]_1 - [i ﬂzn]_l.

on!

REMARK 2. Throughout this note we have not hesitated to use
formal power series. This does not invalidate the results obtained; it
has permitted the results to be gotten faster. As to how we could have
reasoned without the use of these tormal series, we refer to the refer-
ence in footnote 3, where there is to be found on page 596 a note of
justification.
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