A NEW APPLICATION OF THE SCHUR DERIVATE
GORDON OVERHOLTZER

Fermat's theorem in elementary number theory states that if p is
a rational prime, a an integer,

a? = ¢ (mod p).
Hence
a?™* = g? (mod pn*')
or
©,1) (a7t — aP)/pmt1

is a rational, hence a p-adic, integer.

By introducing as the derivate, Aa,, of a sequence {a,.} with re-
spect to the number p the expression

(0, 2) Aag, = (an+1 - dn)/P”+1,

I. Schur?! in 1933 generalized Fermat’s theorem. The Fermat theorem
states that the first Schur derivate of the sequence {a“} with g=p7,
(0, 1), is integral. Schur proved the generalization that, if a is prime
to p, not only the first derivate, but the higher Schur derivates up
to the (p —1)st are integral (in the p-adic or rational sense). Zorn? in
1936 extended this result by proving that all Schur derivates of {a¢}
with g=p" are p-adically bounded, hence convergent, and discussing
the p-adic function, lim, ., A™a?, where g=p".

It is a fact? of elementary number theory that the sum of the kth
(k a positive or negative integer or zero) powers of the rational in-
tegers less than and prime to p* (p a rational prime, # a positive in-
teger) is divisible by p* if p—1 does not divide k or by p»~1if p—1
divides k. The quotient of the division of such a sum by p~,

(, 3) S[n, «*] = i'ik/pn,

=1
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1 Preuss. Akad. Wiss. Sitzungsber. (1933) p. 145.

2 Ann. of Math. vol. 38 (1937) pp. 451-464.

3 For a recent proof see H. Gupta, Proceedings of the Indian Academy of Sciences,
Section A, vol. 13 (1944) pp. 85-86. His theorem is stated for even &, but the evenness
of k is not used. Note that all concepts used are defined for negative 2 and the
same proof holds. Classic results in number theory are Wolstenholme's theorem and
Leudesdorf’s generalization which yield divisibility by p?* for k= —1, p>3.
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(where ¢=p" and the prime on the summation sign indicates sum-
mation over 7, (¢, p)=1) is then a p-adic integer or has at most a
denominator of p.

The present paper studies the p-adic properties of the sequence
{S[n, #%]}. It is proved that the sequence is p-adically convergent.
A p-adic function, lim,., S|z, x¥], may be defined for rational in-
tegers, and an elementary expression for this function for positive k
given in terms of Bernoullian numbers. All the Schur derivates of this
sequence, A™S[n, x*], are p-adically bounded, hence p-adically con-
vergent. The limit of A»S[#n, x*] is given in terms of the p-adic func-
tion, lim, .. S[n, x¥-m].

The quotients

g

0.4 Ol 5] = St/
t=1
where g =", are p-adically bounded for k odd. Moreover {Q[n, x*]} is
p-adically convergent for & odd. The function lim,.. Q[#, x*] (¢ odd)
is given in terms of lim, ., S[#, x¥~1].
If we write

q
0,5 T[n ex)]=22G), Slne®]=Tn g]/p

i=1
where ¢ =p", it is evident that the results concerning {.S[#, %]} extend
to {S [7, g(x)]} if g(x) is a polynomial. It is proved also that these
results extend to S[#, f(x)] where f(x) is the power series

f3) = 3 a0

j=e

and the valuation of a; approaches zero as j approaches «. Moreover

lim S[n, f(x)] = iajlim S[n, 7).

n— 0 j=e n—ow

The results for {S[z, x¥]} are deduced as consequences of general
formulas for A™S[n, g(x)], Schur derivates of the sequence of sums
of the values of g(x) for x less than and prime to p* divided by p».
The sums are over a special set of values, a reduced residue set
modulo p*; sums over other sets of values of ¥ might be studied. For
example, the function might be summed over integers congruent to ¢
modulo p and less than p». The formulas of this paper could be used
in this special case by setting g(x) =0 in the other residue classes. In
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fact, the methods of this paper treat the values belonging to a par-
ticular residue class modulo p together as a part of the whole sum.

1. Power series representations of the Schur derivates. It will be
convenient first to consider the sum of the values of a function, g(x),
for the integers less than and prime to p*, p a rational prime. The
results of this section will be applied to the special case g(x) =x* and
theorems concerning the p-adic convergence of {S[#, x*]} and the
Schur derivates of this sequence will be proved.

Assume that g(x) is a function defined for p-adic integers and g(x)
can be represented by power seriest

g(x) = Zg(j)(a)(x — a)i/j!, e=12---,p—-1,
=0
p-adically convergent if ¢(x—a) <1, ¢ the valuation function. Note
that the power series about different ¢ are independent. A conse-
quence of this analyticity condition is that g(x) can be developed
about any point in the circle of convergence, and the series will con-
verge for any point in the original circle to the same limit. Since each
of the power series can be differentiated term by term, g®(x) is a
function satisfying the analyticity conditions imposed on g(x) in this
paragraph.
Assume also that S[#, g® (x) ] is p-adically bounded uniformly, that
is, if ¢(p) =3,

(lr 1) ¢{S[n7 g<k)(x)]} s 6N9 n = 19 21 3: Tty

where N is independent of &.
The power series of g(x) will be used to express S[z+1, g(x)] and
consequently AS[#, g(x)] as an infinite series in S|z, g@(x)]. Now

T+ 1, 6] = 250 = 2 5 e+ w9
where r =p™*! and g=p",
Tln+1,¢()] = Vi {g() + Gp™E () + pm% (/2! + - - - }.

Summing out on » and writing b(k) = Y _?Zsv¥=T][1, x*], we obtain

4 For a discussion of the power series of g(x) and proof of the properties cited,
see Schobe, Beitrige sur Funktionentheorie in nichtarchimedisch bewerteten Korpern,
Inaugural Dissertation, Halle, 1930, pp. 17-19. However, we use only such of his
theorems as are capable of an easy proof.
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q

Tln+ 1, g(x)] = 22/ [pg(5) + b()pg'(G) + b@p*g"(G) /2! + - -+ - ]

=1

= » 30 + P SIE ()

=1 i=1

+ b(2)p D) " (/20 + - - -

=1

= pT[n, g(x)] + b(1)p"T[n, ¢'(x)]
+ 5(2)p*T[n, g"(D]/2! 4 -+ -,

(1,2 Thh+ 1, 8] = pTln, g(x)] = ‘_4: b("zf = Tn, g0
Divide (1, 2) by p*+! and obtain
(1,9 Slo+ 1,669 = b g(@)] = 5 22 s, g0,
==
Substitution of (1, 3) into the definition of AS[xn, g(x)] gives
AS[n, g(2)] = -;—g:l b(p;!pan [7, g (%) ]/p™,

1 =2 b n(p—1)
1,4 AS[n, g<x>]=-—EM—

P* =1 p!

Sln, g» ().

Write
1,5) L'(p) = p~%(p)/p!.

Since g®(x) is a function satisfying all the conditions imposed on
g(x), (1, 4) becomes

0,6 Sk g®@)] = 3 L()pre-1S[n, g+0()].

Note that the coefficients L’(p) depend only on the summation index.
An estimate of the valuation of L’(p) will be required for the in-
vestigation of the higher derivates. From (1, 5)

oL (0)] = o[p~2(0) /o!]= (p72)[b(0) 1o [1/01].

If p=2 ¢ quip®, 0Su;<p, the power of pin p! is (p—D ¢ qus)/(p—1)
and is, therefore, at most p/(p—1). Hence

1,n S[L'(p)] < 6%—r/ (> = §=2-p/(2—1),
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In general, an expression for A™1S[#n, g(x)] as an infinite series in
S[n, g (x)] may be obtained from a series for A"S[n, g(x)] by sub-
stitution into the definition of A™+1S[#, g(x)], algebraic manipulation,
and rearrangement of a double series. A recursion formula for the
coefficients of the series for A™1S[z, g(x)] in terms of the coefficients
of A7S[n, g(x)], AS[n, g(x)] results. Justification of the rearrangement
of the double series requires an estimate of the valuation of the co-
efficients of A7S[n, g(x)] and AS[#, g(x)]. This estimate of the valua-
tion of the coefficients is established by induction, using the recursion
formula for the coefficients. To prove the possibility of representation
of ArS[#n, g(x)] as an infinite series in S[#, g¢®(x)] in the manner de-
scribed, the results concerning the recursion formula and the valua-
tion of the coefficients will be stated before it is evident how they are
obtained.

(1, 8) THEOREM. If g(x) is a function defined for p-adic integers, and
g(x) may be expanded into power series about a=1, 2, - - -, p—1,
p-adically convergent if ¢p(x—a)<1, and S[n, g®(x)] is uniformly
p-adically bounded, then there exist coefficients L™ (a) independent of
n and g(x) such that

(1,9)  AS[n g®)] = 3 L (@)premS[n, g@ ()],
—2
Ly) = p%(v) ,
~!

(1,10) LD (y) = 3 *m pe=mLm (a)L/(B)+ (p7= ™1 — p~1) L™ (v),5
1, 11) S[Li™(a)] < §2m—ale—D),

The proof is by induction on m. For m=1, (1, 9) and (1, 11) be-
come (1, 4) and (1, 7). The first formula of (1, 10) is (1, 5).

Assume (1, 9) and (1, 11) hold for m <r. The truth of (1, 9) and
(1, 11) for m=1, 7 implies (1, 9) for m =741 and the recursion for-
mula of (1, 10) for m =r. The recursion formula of (1, 10) for m=r
implies (1, 11) for m =r+41. Substitution of (1, 9) for m =7 into the
definition of A™+1S[n, g(x)] gives

5 The composite superscript “*m” after a “3_” shall indicate the summation con-
dition a+B8=1, 821, a=m. The notations “3_*r” and “max*r” are to be interpreted
correspondingly.



318 GORDON OVERHOLTZER [Apri:
A+1S[n, g(#)] = {AS[n + 1, g(2)] — A'S[n, g(x)]}/pm+

= { iL(r)(a)P(n+1)(a—r)S[n + 1, g (x)]

a=r

— i L(r)(a)pn(a—-r)S[n’ g(a)(x) ]} /P"+1

a=r

i L(r)(a) {p(n+1)(a—r)s [n + 1, g(a)(x)]

— p(n+1) (a—-r)S [’ﬂ, g(a) (x) ] + p(n+1) (a—r)S [ﬂ, g(a)(x) ]
— premnSla, g(@)]} /poh

o0

= Y LW (a){pmtDnAS[n, g@(x)]

a=r

+ (prD e — pren)S[n, g () )/pm)

- 10w {pw @ 3 L(8)p 605 [, g ()]

o=r B=1

+ (p(n+1)(a—r) — pn(a—r))s[n’ g(a)(x)]/Pn+l} .

The coefficient of S|z, g (x)] in A+1S[n, g(x)], after a formal re-
arrangement of terms, which will be justified later, is

SRLO (@) prHD e LI (B) prB—) L (prtD (r—r) — palr=)L () (y)/pmHL
= D *rpnlatbor—Dta—r[ () (o) L' (B) + (p(r+Dr—r=1 — palr—r—D=1)L (") (y)
= prir I [TrrperLO(@L/(B) + (prrt — L)),

Writing

(1,12) L&V (y) = 2 2¥pe—LO(a)L'(B) + (p7 — p~)LD(v),
which is (1, 10) for m =r, we obtain

(1,13)  A™S[n, g®)] = 3 LOW(y)prtre40iS[n, g (x)],

y=r+l1

since from (1, 10) for m=r, LY () =0,1=1,2, - - -, 7.
The validity of the rearrangement remains to be established. It
suffices to show that the iterated series

So’o‘ L(r)(a)p(nﬂ)(a—r)iL'(B)pn(p—l)s[n, g8 ()]

am=r B=1
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may be summed as

o0

2 { ZHLO@p 0 e=n L (§)pre-S [, gt ()]},

y=r+1
It is sufficient® to show that the valuation of the general term
prlatb-r—D+a—r[ ()L’ (B)S[n, g=+P(x)] becomes arbitrarily small
for a4+ sufficiently large. Using (1, 1) and our induction assumption
(1, 11) for m=1, r,

¢ { prlatb—r—Dra—rL (D ()L (B)S [n, g+ (x)]}
< §n(otp—r—1)+ta—r §—2r—a/(p—1) §—2—B/(p—1) §N
< 5@t [n—1/ (=D I—n(rH1)~r—2r—24N
< o
if a4+B8>(et+nr+nt3r+2—N)/[n—1/(p—1)]. Hence the rear-
rangement is valid and (1, 10) for m=r, (1, 12), and (1, 9) for
m=r-+41, (1, 13) have been established.

Finally it must be established that (1, 11) is hereditary. By (1, 10)
for m=r,

$[L+D(7)]
< max {¢[ 2 *peL(L'(B)], #[(p7t — pHLO(W]}
< max {max*' (82— ro—2r—eal (p=1)5=2-/ (>—1)  §=15—2r—v/(r—1)}
= max {max,z, (§o—r—2(r+D=7/(—D) §2r—1=v/(—D)}

= §=2(r+D—v/(p=1)

which is (1, 11) for m =r+1. The induction is complete.

2. The Schur derivates of x*. In this section the results of the
previous section are applied to the special case of g(x)=x* (¢ a ra-
tional integer; positive, negative, or zero). Note that g(x)=x* is a
function satisfying the conditions imposed on g(x) in the preceding
section. The function is defined for p-adic integers. The function x*
may be developed in power series by the binomial theorem. Finally

21 ¢{Sln, «*]} = o,

since D _.2,%, where ¢=pn, is divisible by " if p—1 does not divide &
or by p»1if p—1 divides k.
The formula (1, 9) and the estimate of the valuation (1, 11) make it

¢ This rearrangement is an application of a more general theorem of Schébe,
loc. cit. p. 16.
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possible to establish bounds for each Schur derivate A™S[n, x¥].

$(AS[n, x+]) = ¢{ 3 L (@) pria=mS, (a8)(@ ]}

Qe

fIA

max ¢ (L™ (@)p*e=mS[n, (9 ])

azm

IA

max 6—2m~—a/(p—l)+n (a—m)—1
azm

max §e[n—1/(p—D]—m(nt2)—1
azm

Since the exponent of & in the valuation of the terms of A™S[n, x*]
is a nondecreasing function of «, the first term (¢ =m) has the maxi-
mum valuation. Hence

2,2 (A™S[n, x*]) S §-2m—mi (=11,
Since the exponent of § in (2, 2) is independent of #, it follows that

(2, 3) THEOREM. All the Schur derivates A™S|n, x*] are p-adically
bounded.

If the mth derivate is bounded, the (m —1)st derivate is p-adically
convergent. An immediate consequence of (2, 3) is

(2, 4) THEOREM. All the Schur derivates A™S|n, x*] are p-adically
convergent.

In particular, since the first derivate AS[#, x*] is bounded,
(2, 5) THEOREM. S|n, x*] is p-adically convergent.

The formula (1, 9) may also be used to obtain expressions for the
p-adic limits of the Schur derivates. From the argument used in
establishing (2, 3), it may be observed that all terms of A™S[z, xt]

=3 2 L0 (@)prta—mS[n, (x¥)(®] after the first have power of p at
least

m+Dn—1/p—D]—mn+2) -1
=n—2m—(m+1)/(p—1) — 1.
Hence

(2,6) A7S[n, x*] = L™ (m)S[n, (x¥)(™] 4 pr—2m=OmtDIG=D-1R,

where R, is a p-adic integer. As n approaches «, the second term of
the right member of (2, 6) approaches zero. Hence
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lim A™S[n, 2] = lim L™ (m)S[n, (%)™ ]

n—o n—w

=k(k—1) - (k—m+ 1)L™(m) lim S[n, x*m].

n—0

@

From the Bernoulli numbers, an elementary expression for
lim,., S[#, «*] for positive ¢ may be derived. Summation over
numbers relatively prime to » may be accomplished by summing over
all integers and subtracting the sum over multiples of . Then, setting
g=p"and s=p"1,

q q 8 gq—1 s—1
AUESEDWEDIEDNOLEDILES WY
t=1 t=1 f=1 t==1 =1

For positive even k, introducing the Bernoulli numbers, B;,

Tln, #*] = 09*/(k+ 1) = 47)%/2+ -+ + (= DHE1Byyapr
— pH[(pm )Y/ (R + 1) — (P24 - - -
+ (— 1)k/2—lBk/2Pn~1]
= (= DM Bup® — pH(= DM Buyap™ + S,y
where S, has power of p at least 2(#—1) minus the maximum expo-
nent of p in the denominators of the coefficients of (p7)2, - - -, (pn)¥+1,
say 2n —cx, where ¢ is independent of #. Then
Sln, a*] = (= DM=1By(1 — p+(mod p-o).

Hence, for k& even,

(2,8 lim S[n, x"’] = (— 1)*/21By,(1 — ?k_l).

n—> 0

For positive odd &,

T[n, x*] = (p»)*/(k+ 1) — (p)*/2 4 - - -
+ (= DED12EB gy 2(p™)?/2
= P )Y/ (k+ 1) — (p" /24 - - -
+ (= D*D12k By a(p™1)2/2].

T'[n, x*] has power of p at least 2(z—1) minus the maximum exponent
of p in the denominators of the coefficients of (pn)¥+1, - « . | (p™)?, say
2n —c, ¢ independent of #. Hence

2,9 T[n, x*] = 0 (mod p2r—2*),
Then
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S[n, x*] = 0 (mod p)
and, for & odd,
(2, 10) lim S[n, x*] = 0.

7%i— 0

3. The quotients Q. The congruence (2, 9) shows that, for positive
odd &,

(G Qln, &*] = T[n, x*]/p*
is p-adically bounded, with

6(Q[n, x*]) < o~

The possibility of a theory concerning the p-adic properties of
{Q[n, x*]} for odd k is suggested. We mention the following result.

(3, 2) TaEOREM. Q[n, x*]=kS[n, x*-1]/2 (mod p"), k odd and p an
odd prime.

We prove this for positive & as follows: Since & is odd,

S = 3 >

q k E
=3 S (D) - o
= 2= )+ prh(— )
+ k(e — D(= Y2+ - + (p7)*}

— i/ik + Pnki'(_ i)"‘l(mod pSn)’

te=] t=1

I

where ¢=p", since if k is odd, k—2 is not divisible by p—1, $ an odd
prime, and Y i&,(—4)*~2 is divisible by p=. Hence

2T [n, &%) = pnkT [n, x*](mod p*~).

Division by 2p2* yields (3, 2).
Theorem (3, 2) yields immediately that, k odd,

3,3 Ql[n, x*] = &S[n, x*+1]/2 + p~I,

I a p-adic integer. Hence {Q[n, x*¥]} is p-adically convergent, since
each term of the right member of (3, 3) is convergent.
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(3, 4) TuEOREM. For k odd, p an odd prime, Q[n, x*] is p-adically
convergent, and

lim Q[n, x*] = & lim S[x, x*1]/2.

n—wo n—o

By (2, 8), for positive odd &,

3, 5) lim Q[n, %] = k(— 1)*D/2"1Bg (1 — p*7)/2,

4. Extension to functions defined by power series. The results of
Theorems (2, 3), (2, 4), and (2, 5) extend immediately to A™S[n, g(x)],
if g(x) is a polynomial. The object of this section is to extend these
results to the case where g(x) is a power series

4 1) 13 = 3 aims

i=e

where ¢ is any integer. A necessary and sufficient condition that f(x)
be defined for p-adic integers is that ¢(a:;)—0 as 7— ». If the coeffi-
cients a; satisfy this condition, f(x) is a function satisfying all the
conditions imposed on g(x) in §1. Now

Sl )] = V1@ /07 = 3 3 asit/pr

fu=] =1 j=e
o q o

= Z a; Elii/?" = Z aiS[”’ xi]v
J=e t=1 =6

where g=p" We wish to show that the limit can be taken term by
term, that is,

(4,2) lim S[n, f(x)] = lim > ¢;S[n, 27] = 3 a;lim S[n, #i].
fn—row n—w j=a i—g n—ro
To establish (4, 2), it is sufficient to show that

(4, 3) lim,., a;S[n, x7] exists,

(4, 4) > ,a:S[n, x7] converges uniformly in #, that is, for each
€>0, there exists an N such that ¢(a;S[n, x/]) <e for j= N, N inde-
pendent of ».

The condition (4, 3) is satisfied by virtue of Theorem (2, 5) and
the condition (4, 4) is satisfied from the condition on the coefficients a;
and the fact that ¢(S[#, x7]) <4~ Hence we have

(4, 5) THEOREM. {S[n, f(x)]} is p-adically convergent and
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(4, 6) lim S[n, f(x)] = > a;lim S[n, «7].
n—oo juse n—w
5. Sums of kth powers. This section will consider the sum of the

kth powers of the positive rational integers congruent to one modulo p
and less than p» Write

q
5,1) Ti[n, «*] = > ik,
t=1,7=p(mod p)
where g =p". In this case k may be chosen a p-adic integer.
Since the residue class one is a subgroup of the cyclic group of a
reduced residue set modulo $*, it is cyclic and there exists a primitive
root, 7, generating the residue class modulo . Then

Tiln, a*] = r* + 72k + . . . 4 7" (mod p™)
= k(1 — ¥ ) /(1 — r¥)(mod p").

If E=p#\, (\, ) =1, then the power of p in 1 —7**"" is u+x and the
power of p in 1 —7* is u-+1. Hence

5,2 Ty[n, £*¥] = 0 (mod p~7).
If we write
(S, 3) Siln, x*] = Ti[n, x*]/p»,

S1[n, x*] is a p-adic integer.
For other residue classes define, (4o, p) =1,

5, 4) Tuln, #]= > i,

tm=1,t==1g(mod p)

where ¢=p". Then

-

pn—1—1 pn—1—1 k
Taln 1 =% Got ) =it % (145 )
ye=0 y==0 %0
» P k n & k
=i 2, (1+vp) (modp) =iTifn 5]
=0
(5, 5) T [n, xk] = 0 (mod pu_l),

since v and »/4, run through the same residue classes modulo p*. Note
that T, [#, x*] is exactly divisible by p»~, that is, not divisible by p".
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