EXTENSION OF A THEOREM OF BOCHNER ON EXPRESS-
ING FUNCTIONALS AS RIEMANN INTEGRALS

BROCKWAY McMILLAN AND PACO LAGERSTROM

Introduction. S. Bochner! has shown that an additive homogeneous
functional defined over a sufficiently large class C of functions can be
realized as a Riemann integral with respect to a finitely additive
measure V in the space X over which the functions are defined. His
proof makes use of the fact that the constant function belongs to C,
as a result, V(X) is finite. It is the purpose of this note to show that
a similar theorem holds even when V(X) turns out to be infinite. A
modification of Bochner’s proof would suffice for this stronger theo-
rem. We have chosen rather to treat it as a problem of extending the
domain of definition of the given functional.

Throughout we have used the symbol — to be read as “implies.”
The equality = is used to denote an equality which holds by defini-
tion.

Notations. We consider a space X of points x, and real-valued point
functions f, g, - - - over X. Given f, g, and real numbers @, b, we shall
write

| f1, af +bg, fo, FAG TV & 7+ f-

respectively, for those functions whose values for each x are given by

[ f@ ], af(a) +bg(x), f(x)glx),  inf [f(), g(x)],
sup [f(x)v g(x)]r sup [f(x)r O]v sup [_ f(x): 0]'

We shall write @ for the constant function f(x) =¢, and write f=g
if for each «, f(x) = g(x). The function which coincides with f on a set
A and is equal to 0 in X —A4 will be denoted by f4. In particular we
write 1,4 for the characteristic function of the set 4. The symbol &
will denote the empty set.

It is clear that f=f+—f—, and that

()t = (s, ()= (Ma

1. R-measure.
1.1. By an R-measure in X we shall mean a set function V(E) de-
fined for sets E of a family A with the following properties:
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1S, Bochner, Additive set functions on groups, Ann. of Math. vol. 40 (1939) pp.
769-799. The theorem in question occurs in paragraph 4.
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If E, E1, E:€A, then
(1) E\VE;€A,
(3) 0SV(B) S =,
(4) V(E)=0,and BCE—BEA,
(5) ExNEy=Z—V(E\\JE;) = V(E1)+ V(Ey).
Also
(6) there exists an EEA with 0< V(E) < .
1.2. Remark. (1), (2) imply EX/NE.€A, E,—E, €A, g CA, XEA.

2. The Riemann integral. Let A be the class of all partitions 8 of X
into finitely many pairwise disjoint sets of A. Given any f20,
bounded on E€A with V(E)< », we define

Su(f, E, 9) ED%V(D N E)(sup {fs(x)| « € D}),
S:(f, E, 8) ED%:aV(D N B)(inf {fz(x)| x € D}),
S.(f, E) = inf {S.(f, E, 8)|s € a},
Su(f, E) = sup {S:(f, E, 8)| 6 € A},
Su(f) = sup {S.(f, E)| EE A, V(E) < =},
Si(f) = sup {Si(f, E)| EE A, V(E) < }.
We define the function classes

Re = {f| Su(f*, E) = Su(f+, E) < =,

2.3

2.4
Su(f~, E) = Su(f~, E) < =},
R={f]|Su(f), Su(f) < ®» and (V(E) < o —fE Rg)}.
Finally,
2.5 fe R~—>ffESu(f+) — Su(P).

It is easily shown that the supremum and infimum in 2.2 are in
fact monotone limits over the directed set of partitions § A, A being
ordered by refinement. From this fact and from the definition it then
follows that (when E, E;, E.& A and V(E), V(E;)< )

26 f%O and EICE2_')O§Su(f) El) §Su(f) E2))
2.7 f2 05/ E) = Sulfe), Sy E) = Si(fa),

28 JERi—(mER and [ fu =SB = S B),
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2.9 fezaandfgo—»ff=sup {ffEIEGA,V(E)<°o},

291 fER2f fTER,

2.92 faf+bg=aff+bfg.

3. Modules.

3.1. A class C of real-valued functions over X, together with a real-
valued linear functional L defined over C, is called a module if it
satisfies conditions 3.1 (1)-(11) below. (f, g denote elements of C;
a, a real number.)

(1) Each fin C is bounded.

(2) f+gEc.

(3) af€C.

4) fAOEC.

(5) FALEC.

©) |L(f)| <.

(1) L(f+g) =L(f)+L(g).

(8) L(af) =aL(f).

(9) f20—-L(f) 0.

(10) There exists an f&C with L(f) >0.

(11) Infeso L(fAa) =0.

The main theorem of this paper is:

3.2. If C is @ module, there exists an R-measure V(E) in X such that
(1) CCR, (2) fEC-L() =[f, (3) given e>0 and gER, with g0,
there exists an fEC such that 0 Sf<g and L(f) = [g<L(f)+te.

Before constructing the R-measure we prove some elementary
properties of a module C.

fLg€EC—-fVyg fAgEC. Forexample,
fVe=¢g—=(@@—-HNO.

34 f&€C a>0—->fANa€&EC, for fAa=0a(1/a)f A\ 1.

3.5 fig€l fzg—L(f) 2 L(g,forL(f) — L(g) = L(f— & 2 0.
3.6 fluEC—fa=F14EC for0= f(x) <b— fu=fA bla

3.3

4. Completion of a module. In 4.1-4.5 below, f, # denote elements
of a module C, while g may be any function.

4.1. L.(g)=inf {L(h) | h=g{ (if there exists an %, such that h=g).

4.2. Li(g)=sup {L(f) Ifég (if there exists an f such that f<g).
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4.3. C*={g|L.(g)=Lu(g)}.
4.4. L*(g)=Lu(g) =Li(g) (for g&C*).
4.5. CCC* and L*(f) =L(f).
4.6. C* is a module. We show (except for some obvious cases) that
C* has properties (1)—(11) of 3.1.
(3) and (8): Suppose g& C* and, say, ¢ <0. Then
{f1f=ag} = {ar| bz g}

Hence
Li(ag) = sup {L(ah)| h 2 g}
Similarly

ainf {L(K)| & = g} = aL*(g).

Lu(ag) = aL*(g).
(2) and (7): Suppose g1, g2&C*. Then

(it falfise) CllfSa+ el

Hence Li(g1)+Li(gs) SLi(g1+gs) and, dually, Lu(gi+ge) =<Lu(gr)
+L,(g2). (2) and (7) then follow from the fact that L;(gi+g)
éLu(g1+g2)-

(4) and (5) follow from the inequality

h—fz (N2 —(fA2).

(11) follows from the fact that every g& C* is covered by an kEC,
and that 3.5 does not depend on (11).

4.7. C* is complete, in the sense that the process of extension de-
scribed in 4.1-4.3 does not yield any new functions when applied
to C*.

Proor. It follows from 4.2 and 4.4 that

sup {L*(f)| fEC* f<¢g} =sup {LN|fEC, f =g},

and similarly for the approximations from above.

4.8. Let C be any module. Given fEC and a number ¢>0, let 1,
be the characteristic function of the set {x| f(x)=a}. For each fEC
there exists an everywhere dense set .S of real numbers ¢ >0 such that
e ES—1,EC*, where C* is the completion of C. Since C* is a module
and is its own completion we have as a corollary the same theorem
with the weaker assumption f& C*.

Proor. We shall prove the stronger result that there is at most a
countable set {a;} of numbers a;>0 such that 1, is not in C*. Given
e>0, consider any @ =¢ and numbers b, ¢ >0 with c<e. For any d=0
let fé=fA\dEC. Let¢(d) =L(f%). We have
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(1 cH{fe — foo} 2 1o 2 B{fet — foy,
as may be seen by analyzing the three cases

f@za+b aesf@)<e+bd flx) <a
Using 4.6 and (7), (8) of 3.1, we have from (1) that

(2) co(a) — ¢(a— )] = Lu(1a) 2 Li(12) = b~ (e + b) — ¢(a) ].

The outside inequalities imply that ¢(e) is a convex function for
a 2e. Taking limits in (2) as b, c—0, we have further that

D¢(a) 2 Lu(ls) 2 Li(1s) Z D¥¢(a).

Since ¢(a) is convex in the interval in question, D~¢#D%¢$ at most
at a countable number of points {a!}, a/ Ze. Hence when a2e is
not in {a!}, D-¢=D+*¢$ and 1,EC* by 4.3. By taking successively
e=1/n, n=1, 2, - . ., we get at most a countable sum of countable

sets—that is, at most a countable set {a;}—in the interval a>0 such
that 1,, is not in C*,

4.9. Let A*={4|1,EC*}. Then
f € C* — L¥(f) = lim L*(fu),

where the limit is the limit taken on the directed system A* ordered
by D.

Proor. It is sufficient to prove 4.9 for f=0. By 4.8 there exists a
sequence @, | 0 such that the characteristic functions 1, of the sets

{xlf(x)ga,.} are all in C*. Put g,=f—(fAa.). Then g, EC*, g, =f,
and g.-1,=g,.. Hence

L*(g.) = L*(f-1.) = L*(f).

But inf L*(f—g,) =0 by 3.1, (11), 4.9 for f=0 now follows, since if
fzo0

L¥(f) & lim L¥(fa) = sup {L*(fa) | 4 € A
2 sup L*(f-1) Z sup L*(ga) = L*(f).

5. Extension of L* to “unbounded” functions.

5.1. C**={f| A CA*—f EC*}.

5.2(a). L**(f) =lims4 L*(f4) (for fEC**, f=0). Here the limit is
taken as in 4.9.

5.2. L**(f) = L*(f+) — L**(f~) =lim.L*(f}) —lim L*(f7)=lmaL*(f4)
(for f& C** and L**(ft+), L*¥*(f~) < »). Thus ]L**(f)l < «, except pos-
sibly if £>0.
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5.3. C* CC** and f&eC*—L**(f)=L*(f) (3.6, 4.9).

5.4. fZ0—-L**(f)=0.

5.5. f, g&EC*—qaf+bg& C* and (if L**(f), L**(g) < «) L**(af +bg)
=aL**(f) +bL**(g), since (af +bg)-1a=a -fla+b-gls, and L** is de-
fined as a limit on the directed set A¥*,

5.6. f=g—L**(f)=L**(g) (5.4, 5.5).

5.7. 0=f=gand g&C** and L**(g) =0—f& C** and L**(f) =0. For

faEC* by 4.7. Hence by 5.4, 5.6

fEC*™, and L*™(f) =0

5.8. f, IEEC**'——EfEEC** For IAEC*—)(fE)lA= (fA)(lEle) EC* by
3.6.

5.9. fEC**, f=0—-L**(f) =sup {L*(f4)|1.EC} (5.6, 4.9, 5.3).

5.10. 1x=1&C** (5.1).

Actually 5.8 is a special case of the following theorem, which how-
ever will not be needed for this paper:

5.11. f, gEC¥*—f - g& C**.

Proor. Assume 0<%, ¢€C* and 1,EC*. It follows from 4.8 that
we may subdivide X into a finite number of sets E, such that
1g,-14E€C* and that the oscillation of # and 7 on each set is less
than e. Denoting by a,;’, b)', @/, b/ the maximum and minimum
of h and 7 on E, we have

doal b g, 14 S heicly £ D0 bl 1g, 14

Hence by the completeness of C*:%-7-1,&EC*. The theorem now fol-
lows since putting f4=# and g,=1% we have that f-g-14=f4-gsEC*
for every 1,EC*.

6. The R-measure defined by L**.

6.1(a). A={E|1z€C**}.

6.1(b). V(E)=L**(1g) (for EEA).

6.1(c). A’={E|EEA and V(E)< = }.

From these definitions it follows:

6.2. V is an R-measure as defined in §1.

Proor. The properties (1)—(5) are obvious from §5. As for (6), we
have from 3.1 (10) an f&C with L(f) >0. We can assume 0=f(x) <1.
If L*(f14) =0 for all 1,&EC*, then L(f) =0 by 4.9, 4.5. Hence for one
14, L*(f4) >0. But 14=f4. Hence L*(14) = V(4) >0.

7. Comparison of L**(f) and [f(x)d V.
7.1. fEC*, f=fr=0, EEA’>fERg and [f=L*(f).
Proor. (a) If V(E)=0, then S.(fz) =Si(fz) =0=ff, since for some
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a7#0, 0<aft=1p and 0=af-=1g, we have L*(af)=0 by 5.3, 5.7.
Hence L*(f)=0=ff.

(b) If 0<V(E) < =, given ¢>0, by 3.1 (1) and 4.8, there exists a
partition 6 of X into sets 4o, - - - , A,&A such that

sup {f(x) — f(9) | x, y € 4:} < e[V(B)], i=0,--,m

Let E;=EA; Then 15,=1,&€C** and hence fi=f1,&C** by 5.8.
Letting b;=sup {f(x)[xEE,-}, we have

LX) = I*(fs) = T I*(f1)

and

Su(f, E, 8) = Z V(E)b; = Z L**(1;-bs).

Hence |L*(f) — Su(f, E,8)| < e and L*(f) = Su(f, E). Similarly
L*(f)=S(f, E).

7.2. If f=20,if fER, for AEA*, and if f is bounded on any EEA,
then

(a) fEREg for every ECA’,

(b) sup {[fz| EEA’} =sup {[fs| A €EA*}.

Proor. Since f is bounded on E and L**(1g) < 0, Su(f, E) — Su.(f, 4)
<e/2 for some 1,4,EC*, 14,515 Dually Si(f, E)—Si(f, 42)<e/2
(14,€C* 14,=1z). The inequalities still hold if we replace 4; and 4,
by A =A4,\UAs;. Since S,(f, 4) =Si(f, 4) we have S.(f, E)—S.(f, E) <e
for any e. Hence fERg and [fg— JS'fa<e from which (b) follows.

7.3. fEC*fER and [f=L*(f).

Proor. Assume f=0. By 7.1, f4& Ry, that is, fER, for any 4 EA*
and [f4=L*(f4). Since f is bounded, fERg (EEA’) by 7.2(a). From
7.2(b) and 4.9 it follows that sup {[fz| EEA’} is equal to L*(f),
hence finite, and equal to [f by 2.9. For any f&C*, 7.3 then follows
by 2.91, 2.92.

7.4. fER, and A EA*—fEC*.

ProOOF. fER,4 means that f can be approximated from above and
below by functions ) a,14, where 4,EA4*. Hence fEC* by 4.7.

7.5. fER—fEC** and L**(f)=[f.

ProoF. Assume f=0, then fER—f1 ER4 for every A EA*. By 7.4,
faEC* and hence f&E C**.

Furthermore [f = sup {[fs|4 € A*} = sup {L*(f4)|4 €A’}
=L**(f) (2.9, 7.2, 7.1). For any fER, 7.5 follows from its truth for

S

The proof of our main theorem, 3.2, is now complete: That V is
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an R-measure was shown in §6, (1) and (2) follow from 7.3, (3) from
7.5 and the definition of L**.

8. Some special cases.

A. 8.1. Assume that f(x) =1&Cand L(1) =1. (This makes 3.1 (5),
(10) and (11) redundant, (11) follows from the fact that L(f Aa)
=L(e-1)=a.) In this case V(X)=1 and 3.2 reduces to Bochner’s
theorem.

B. 8.2. DEFINITION. By an L-extension of V we shall mean a count-
ably additive, complete measure U defined for sets of a countably
additive, complemented family B such that B DA and for EEA,
U(E)=V(E).

8.3. Replace 3.1 (11) by 3.1 (12): {fa, gEC, 0=faSg, lim, fu(x) =0
for all } —lim, L(f,) =0. Then (a) Theorem 3.2 still holds and in ad-
dition (b) V possesses an L-extension U such that (c) 3.2 (3) holds
when “gE&R” is replaced by “g is measurable and integrable (U).”

ProorF. (a) 3.1 (12) implies 3.1 (11). For fEC put f, =inf (f, 1/n).
Then inf >0 L(f Ae) Slim L(f;+) =0.

(b) It is known? that any V with properties 1.1 (1)-(5) possesses
an L-extension if and only if V has the additional property: {E,.EA,
EnZ Enp1, V(E) < ©, NEn=@& }—lim, V(E,) =0. That V has this
property follows from

8.4. {faEC**, fuZfup, for each x inf fu(x) =0, L**(fi) <}
—lim L**(f,) =0.

ProoF. Suppose that for all #, L**(f,) =e¢>0. Since L**(f,) <
there exists an 4 €A* such that L**(fi—fi4) <e/2. Since (1—14)fx
=(1—14)f1 we also have L**(f,—fns) Se/2, and L**(fn4)=e/2 for
all #». Hence we can find a g,&C such that 0 =g, =f.4 and L(g,) =e/3.
But evidently for each %, lim g,(x) =0. Since there exists a g&C such
that g=fi-14>g,, this contradicts 3.1 (12).

(c) To show that the analogue of 3.2 (3) holds for g measurable
and integrable (U), we point out that (a) is sufficient to show that 3.2
(3) holds when g is the characteristic function of a set B measurable
(U) with U(B)< « and (b) if U is an L-extension of V then, given
e¢>0, V contains an E&A such that V(E) > U(E) —e. The result then
follows from 3.2 (3).

(a) is a consequence of the ordinary Lebesgue theory while (b) re-

sults from the manner in which U is defined as an extension of V.2
PRINCETON UNIVERSITY

2 This theorem is proved by Kolmogoroff (A. Kolmogoroff, Grundbegriffe der
Wahrscheinlichkeitsrechnung, Berlin, 1933) for the case V(X)=1. When X is the sum
of countably many sets of finite measure, the proof given by Jessen (B. Jessen,
Abstrakt maal- og integraltheorie, 1, Matematisk Tidsskrift (B) (1934) p. 78) applies.
The proof in the general case follows by a modification of that of Jessen.



