
SOME REMARKS ON ALMOST PERIODIC 
TRANSFORMATIONS 

P. ERDÖS AND A. H. STONE 

In a recent paper in this Bulletin (see [3]1)» W. H. Gottschalk has 
proved a number of interesting theorems on "recurrent" and "almost 
periodic" homeomorphisms of a space on itself. In the first part of 
the present note we give very simple proofs of some of Gottschalk's 
theorems in an even more general form. In the second half we con­
sider "regular" transformations in more detail. 

1. Recurrent and almost periodic transformations. 
Notations. Let ƒ be a continuous mapping (not necessarily a 

homeomorphism) of a topological space X in itself (that is, f(X)QX). 
We say that ƒ is recurrent a t a point # £ X , or that x is recurrent un­
der ƒ, if, given any neighbourhood U(x) of x, there exist infinitely 
many positive integers n for which fn(x)ÇE.U(x). (This definition is 
equivalent to Gottschalk's if X is a T\ space.) Further, ƒ is almost 
periodic a t x if, given any U(x), there exists an N(x, U(x))>0 such 
that for the (infinite) sequence {wt} of positive integers for which 
fm(x) G U(x) we have ni+x — niSN. 

THEOREM I. If a continuous mapping f of a topological space X in 
itself is either (a) recurrent, or (b) almost periodic, at x, then so is ƒ*, 
for each positive integer k.2 

PROOF. Let Nr denote the class of positive integers congruent to 
r mod k. We may clearly assume that one at least of the classes 
Ni, N2, • • • , Nk-i, say Nr, satisfies : every neighbourhood U(x) of x 
contains ƒ n(x) for infinitely many values of w6ff f ; for otherwise each 
U(x) will contain ƒn(x) for all large enough wGiV*, and the theorem 
will follow trivially. 

Now let UQ be any given open set containing x. Choose WiG-A/V 
such that /W1(ff)£ U0. Since fnl is continuous, there exists an open set 
U\3x such that UIQUQ and fnl(Ui)CUo. Choose n2GNr such that 

f2(x) G U\\ and so on. In this way, we define integers Wi, • • • , nh-i 
GNr and open sets U1DU2D • • • DUk-iBx such tha t fni(x)G ïA-i 
andf**{Ui)CUj-i. 

Received by the editors June 6, 1944. 
1 Numbers in brackets refer to the bibliography at the end of the paper. 
2 Theorem 1(a) is Theorem 1 of [3], without the restriction that ƒ be a homeo­

morphism. Theorem 1(b) is Theorem 6 of [3], without the restrictions that ƒ be a 
homeomorphism and that X be compact. 
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In case (a), we observe that for infinitely many integers m(E.Nr we 
have / W W £ C / M . For each such ra, consider Af=Wi+w2+ • • • 
+nk-i+m; clearly ikf=0 mod k, and it is easy to see t h a t / M ( # ) £ UQ. 
Since there are infinitely many values of M, and UQ was any open set 
containing x, this proves that ƒk is recurrent at x. 

In case (b), there will be an infinite sequence \m%\ of posi­
tive integers (not necessarily in Nr) such that fmi(x)ÇzUk-i and 
sup (m,-+i-mi) < oo. Now assume temporarily that k is prime. Then, 
for each w»-, one of the k incongruent integers m»-, mi+tik-u • • • , w» 
+Wfc_i+»jb-2+ • • • + ^ 2 + ^ ! will be congruent to 0 mod k; call this 
integer Mi. I t is easy to see tha t / M *(x)E UQ and that sup (Mi+i — Mi) 
< oo. On rearranging the sequence {Mi} in increasing order of mag­
nitude, we see that the theorem is proved in this case—if k is prime. 
And the theorem follows in general, by induction over k. 

THEOREM I I . Let f be a homeomorphism of a connected topological 
space X on itself (J(X) —X). If a point x, recurrent under f, separates 
two other recurrent points in X, then f is periodic at x.z 

PROOF. Let X—(x)=A\JB, where A, B are mutually separated 
sets and A, B contain the recurrent points yf z respectively. Thus 
"A=A\J(x)y S = J5U(^), and the sets 1 and B are connected. If the 
theorem is false, then for every positive integer n we have fn(x)9éx; 
from this we shall derive a contradiction. 

We first show that a positive integer k exists such that : 
(1) p(A) meets "I andfk(B) meets B. 
For suppose not. Without loss of generality, we may assume that 

f(x) ÇzA. We assert that : 
(2) fn(A) meets A, for every positive integer n. 
For this is true when » = 1, since f(A)3f(x). Suppose (2) is true 

when » = w. Then, since (1) is fa lse , / W (5)P\1 = 0, and so_fm(B)CA. 
Hence, s i nce / w i s a 1-1 mapping, fm(A)DB, so that fm+1(A)Dfm+1(A) 
Df(B)3f(x)ÇE:A. Thus (2) follows for w = m + l , and therefore holds 
for all n, by induction. Hence, since (1) is false, we have from (2) 
that fn(B)r\'B = 0 for every positive integer n. This contradicts the 
fact that ƒ is recurrent at ^G-B; and so (1) is proved. 

Again without' loss of generality, we may assume now that 
fk(x)&A. Thus fk(B) meets A) but, from (1), fk(B) also meets B, 
and therefore (being connected) contains x. Since fk is 1-1, we thus 
have x^fk{A)y and therefore xÇ£fk(A). Therefore the connected set 

3 Essentially [3, Theorem 2], without compactness restrictions. The proof as given 
assumes (x) is closed, but could easily be modified so as to dispense with this assump­
tion. 
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fk(A), which meets A (in fk(x) a t least), cannot meet B, so that 
fk(A)CA. I t readily follows that, for every positive integer n, 
fnk(A)Cfk(A)CA. Since fk(A) is a closed set not containing x, this 
contradicts the fact that (by Theorem I) the mapping ƒk is recurrent 
a t x. 

2. Regular and strongly almost periodic transformations. Now 
l e t X be a metric space. A mapping ƒ(X)QX is said to be strongly 
almost periodic (cf. [3]—or "almost periodic," in [ l ] ) if, given €>0 , 
there exists an integer L>0 such that every set of L consecutive 
positive integers contains an n satisfying p(x,fn(x))<e for all xÇzX. 

THEOREM III. If X is a totally bounded metric space, and if f is a 
homeomorphism of X in itself all of whose negative powers are equi-
uniformly continuous, then ƒ is strongly almost periodic.4 

PROOF. By hypothesis, given e > 0 , there exists a 8 > 0 such that 
p(f~m(x), f~m(y)) <e/2 whenever m is a positive integer and x, y are 
points of fm(X) such that p(x, y)<ô. We may clearly assume that 
ô < e / 2 . 

Let Ai, • ' • , Ar be a finite covering of X by sets of diameter less 
than 8. For each positive integer m we define a square matrix B(m) 
of order r by setting bij(m) = 1 if fm(Ai) meets A,, 0 otherwise. Of all 
the matrices -B(l), B(2), • • • , only a finite number can be distinct; 
let -B(l), • • • , B(L) include all the distinct matrices B(m). We shall 
prove the theorem by showing that , given any positive integer M, an 
integer n exists such t ha t : (a) M^n<M+L; (b) p(x, fn(x)) <€, for 
a l l * G X . 

In fact, B(M+L)~B(m) for some m^L. Define n = M+L — m; 
thus (a) is certainly true. To verify (b), let # £ X be given, and sup­
pose xGAi, fM+L(x)Ç:Aj. Then bij(M+L) = l, and so bij(m) = l 
also; thus fm(Ai) meets A5. Let yEA^f^Ai). Then p(x, fn(x)) 
^p(xJ^(y))+p^Hy)JM+L-m(x))ûHAi) + à{f^(A3^ (where 8(il) 
denotes the diameter of ^4) < 5 + e/2 < e. Q.E.D. 

A homeomorphism ƒ of a metric space in itself is said to be regular 
if all its powers (positive or negative) are equi-uniformly continuous. 
Thus every isometry is regular; and conversely it is easy to see tha t 
if a regular homeomorphism ƒ maps the space on itself (as it must if 
the space is compact), then the space can be remetrized so that ƒ be­
comes an isometry. 

THEOREM IV. Let f be a regular homeomorphism of a totally bounded 
4 This is closely related to Theorems 5 and 6 of [2, pp. 701, 702]. It would be de­

sirable to weaken the equi-continuity assumption on the powers of/. 
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metric space in itself. There exists an increasing sequence {n^ of posi­
tive integers such that fni(x)~*x and /(w»)2(a;)-->#, uniformly, for all 

xex* 
PROOF. Given e > 0 , we must show that arbitrarily large integers n 

exist such that, for all xÇ:X, p(fn(x), x)<c and p(fn*(x), x) <e. Now, 
from Theorem I I I , there exists a sequence {mf} such that fm'(x)—>x 
uniformly. We shall first show that a sufficiently rapidly increasing 
subsequence {mi} of {mf} will satisfy (for all #£-X", and every pair of 
integers r, s with 0<r<s) both 

(1) p ( / (mrf WH-1+. ' -+™»)\x), / * î+«*H+- • '+™\X)) < e / 2 

and 

(2) p(J(mr+WH-i+...+m<,)(^)j x) < c# 

For, by hypothesis, there is a positive function 5(e) of the positive 
variable e such that p(fm(x), fm(y)) < e/2 whenever p(#, y)<6(e) and 
jfm(#), fm(y) are defined (m = 0, ± 1 , ± 2 , • • • ). Choose mi to be 
an m' so large that p(fmi(x), x)<e/2 for all # £ X . Then define m8 

inductively to be an m' so large tha t : (a) p(fm*(x), x)<e/28, and 
(b) p( f (»»H--+m, . 1 )«^) ) x)<ô(e/2*), for all # £ X and every r be­
tween 1 and 5 — 1. Clearly (2) follows from (a); and (1) follows from 
(b), since (by the triangle law) 

p(f(mr+mr+i+- • *+™«)V#) /»r+ «rH+ * • '+m»(#)) 

s-1 

< 2^6 /2H-«< 6 /2 . 

Now let -4i, • • • , 4̂fc be a finite covering of X by sets of diameter 
less than min{ ô(S(e)), ô(e)/2} ; and, as in the proof of Theorem II I , 
let B(n) denote the square matrix of order k formed by setting bi3-(n) 
= 1 if fn (Ai) meets A y, 0 otherwise. Consider the sequence of matrices 

2 2 2 2 2 2. 

B(mi), B(pi! + m2)t • • • , B(nti + m2 + • • • + w*), • • • . 

For some two integers r, 5 with 0 < r < 5 we must have B(m\+ • • •+m%) 
= B(ml+ • • • +mj) . An easy calculation (cf. the end of the proof of 
Theorem III) now shows that , for all xÇzX, pfj1^"'+mr(x)9 

fm*+ • • -+mî(x)) < 8(e), so that p(jKu+ * * •+"£(*) > #) < e/2. Combining 
6 This is essentially a generalization of a theorem of Hardy and Littlewood on 

the denseness of the fractional parts of {»2a}, a irrational. See [4, p. 157]. It would 
be desirable to weaken the hypothesis of regularity. 
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this with (1), and writing w = m r+i+ • • • +m8t we see that 
p(fn2(x), x) < e. Since we also have p(/n(#), x) < e, from (2), the theo­
rem is proved. 

In the same way (using induction over k) one could prove that, 
given any positive integer fe, there exists an increasing sequence {ni} 
of positive integers for which, simultaneously, ƒ*»'(#)--»#, /n?(x) 
—»*f • • • i fnki(x)—>x, uniformly, for all xÇzX. In fact, substantially 
the same argument will show that this holds if each power nl 

(t = 1, • • • , k) is replaced by any polynomial 4>t(n) of degree t, having 
integer coefficients, positive leading coefficient, and zero constant 
term. 

These results provide partial answers to the question, raised by 
Theorem I, as to what can be said about the sequence of integers n 
for which fn(x) is in a given neighbourhood of xf ƒ being recurrent 
at x. Thus, under the hypotheses of Theorem IV, this sequence con­
tains infinitely many squares, and in fact infinitely many feth powers. 
Query: Will it (under "reasonable" hypotheses—for example, non-
periodicity) contain infinitely many primes? (For the special case in 
which X is the real line mod 1, and f(x)=x+a, where a is a fixed 
irrational number, the answer is affirmative, though the proof is diffi­
cult.6) 
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PURDUE UNIVERSITY 

6 This follows from results of Vinogradoff; cf. [ô]. See also [5, p. 234]. 


