
DISTRIBUTIVE PROPERTIES OF SET OPERATORS 

WILLIAM WERNICK 

A set operator, designated by small letters, a, 6, • • • , is one which 
takes subsets -4, B, • • • of a given space S into subsets aA, aB> • • • 
C.S. A property of a set operator a is a constant relation between 
argument and image sets under a and is expressed in a statement of 
equation or inclusion, for example, a(A +B) =aAaB or A (ZbA where 
a, b may mean, for example, "complement" or "closure." 

We investigate properties expressed by relations of the form: 

(1) a(AfiB)^:aAf2aB 

where/i, ƒ2 are either set sum: + , or set product: -, and where % 
is either = , D, or C- A property defined by such a relation (1) is a 
distributive property, but not all distributive properties can be de­
fined by (1), for example a(A+B)—A aB+B-aA, and so on. 

When jfi, ƒ2, î lare given constant values, (1) becomes the statement 
of a specific distributive property of a. We now list them individually 
for reference. Properties of monotonicity and inverse-monotonicity (au 
and au below) are closely related to properties of distributivity so 
they are listed in the table also. (The arrow, —», is\ised for implication 
throughout this paper.) 

en: a(A+B)~*aA+aB 
a%: a(A+B)Z)aA+aB 
«8: a(A +B)(ZaA +aB 
«4: a(A \B)**aA • aB 
a6: a(A ' B)Z)aA • aB 
ae: a(A • B)QaA • aB 

TABLE I 

«T: a(A-\-B)**aA • aB 
a6: a(A+B)Z)aA • aB 
as>: a(A +B)daA • aB 
aioi a(A ' B)~aA-\-aB 
ani a(A • B)Z)aA+aB 
«is: a(A • B)C2aA -\-aB 

ctu: A(ZB-+aA(ZaB 
au: A(Z.B-*aÀZ)aB 

To say that a has property a\ (notation alai) means: "For every 
Ay By a(A-\-B)*=*aA+aB" These properties at- are obviously not in­
dependent, for example, a\ai—>a\a*, <*s (which we may shorten, at our 
convenience, to ar->a2, a3). 

Our first main question is: if we hypothesize to a a single property 
on, what other properties must a have? This is completely answered 
by the following diagram of implications: 
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Since most of these implications are quite obvious, I present only 
two proofs which are models for the not too obvious implications. In­
troduction of the hypothesis is indicated by subscript h. 

at -* alz: A C B -> B « A + B -> aB = a(A + B) Z)h aA + aB 

D aA —» aA C aB 

au—> au: [A-B C A —* a(A-B) Z^hCiA; 

A'BCB-±a(A>B) Dh aB] -> a(A-B) D aA + aB. 

Sometimes we know or wish to assume that a given operator a does 
not have a specific property c^ (notation a: on) and we wish to know the 
implications of this. 

We define the property ai thus: a:ai if and only if a:a»; and easily 
get the implications for ai from diagram I by replacing ai by a* and 
reversing every arrow. The resulting diagram, which will not be 
drawn, can be called II . 

Our second main question is: if a:ai what other properties may be 
hypothesized for a (from now on, unless otherwise noted, "property," 
and "a" will include the properties a»). 

The distributive character of an operator a is (said to be) determined 
with respect to at- (notation a:i) if it is known definitely that a:ai 
or that a:ai. Otherwise the distributive character of a is not deter­
mined with respect to ai (notation a: i) and we may then hypothesize 
a:ai (or a:ai), provided there is no subsequent contradiction between 
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properties already hypothesized for a and the consequences of the 
joint hypothesis of ai (or a<) and these properties.1 

All the implications from the joint hypothesis of any of the a»- are 
derivable from the implication diagrams I and II , already given, and 
I I I , which is indicated below: 

III 

«2, OtZ-XXi; «5, « 6 ~ ^ a 4 ; «8, «9—>ÛJ7Î « i l , «12 ~> «10. 

These implications are immediate consequences of the definitions in 
Table I and the usual meanings for set sum, product, and inclusion. 

If a: ai, then from I and II we can easily determine all the j for 
which a:j. If a: ai and a:j then we test the self-consistency of 
alaiy a}-, and of alai, âj, using I, II and I I I . If both of these are pos­
sible (that is, self-conöistent) then a,- is independent of a». If, further­
more, a:ai, a3- and alai, ctj are also possible, then ai and a3- are 
completely independent of each other. We investigate the complete 
existential theory of all the at-, following the procedure outlined above, 
so that if a:ai, aj, %, we shall investigate a:ai, a3-, a^ and a:ai, aj, &h\ 
and so on. 

If, finally, a:i for i = 1, • • • , 14, then we say that the distributive 
character of a is completely determined. I t is easily seen that the 
distributive character of an operator can be completely determined 
in a variety of ways, for example, if alai, a$, then ali for every i; 
likewise if alas, «i0. The selection of properties that completely de­
termine the distributive character of an operator can be said to define 
a particular distributive type, thus two operators of the same type 
possess exactly the same selection of properties {ai}. The complete 
existential theory of these properties as well as all questions on their 
interdependence will be determined as soon as we find all possible 
distributive types.2 

1 The logical distinction between "(a:a») or (a:&i)n and "a: (ai or «»)" should be 
noted. To determine the truth of either "It is now snowing at the North Pole" or 
"It is now not snowing at the North Pole" would require considerable effort whereas 
I already know that "It is now either snowing or not snowing at the North Pole." 

2 1 have made an attempt to list all distinct partially determined (p.d.) operators. 
With the assumption of one en, there are 20 different p.d. operators. With the as­
sumption of two independent a»-, there are 5 completely determined (c.d.)and 99 p.d. 
operators. If we assume three independent ai, there are 4 more c.d. and 185 more 
p.d. operators. If we assume four independent ai, we know, from Table II below, that 
there are 8 more c.d. operators, but I have not determined the number of p.d. opera­
tors with 4 or more independent a» assumed. The enumeration is simple and cumula­
tive but tedious and not especially rewarding. The total number of p.d. operators is 
probably less than 500, but I see no importance in their exact number or constituency 
so they are not listed here. 
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The distributive types have been determined, and they are ex­
hibited in Table II below. Each line represents a single type TV A 
" + " in row i, column j indicates that an operator of type 3H» is as­
sumed to have property af, a "•—w indicates that the operator is as-
asumed to have property 5y. 

TABLE II 

CL\ <X2 «3 on «6 cm «7 <*8 ocg aw an «i2 «is «14 Defining Sets 

T2 

Tz 
T4 

n 
r6 
T7 

Ts 

r9 
Tio 

Tn 
Tn 
Tn 
Tu 
Tn 
Tn 
Tu 
Tn 
Ti9 

Tw 
Tn 
T22 

T2Z 

r24 
Tn 

+ + + + + + + + + + + + + + 1,7 (4) 
+ + + + + + - + - - - + + - 1 , 4 , 9 (1) 
+ + + - - + - + - - - + + - 1 , 3 (1) 
- + - + + + - + - - - + + - 3 , 4 (1) 
_ + _ _ _ + _ + _ _ _ + + _ 2 , 3 , 3 (3) 
- - + - + - + + + + + + - + 2, 7^10 (3) 
- - + - + - + + + - + - - + 7 , 1 2 (1) 
- - + - + - - - + + + + - + 5, 10 (1) 
- - + - + - - - + - + - - + 8, 9, 12 (3) 
- - + _ + - - + - - - + - - 2 ,3 ,5 ,8 ,9 ,12 (9) 
- - + - + - - + - - - - - - 3, 5, 8, Ü, 12 (3) 
- - - f - + - - - - - - - f - - 3, 5 ,8 ,9 ,12 (3) 
- - + - + - - - - - - - - - 3 , 5, 8, 9, 12 (3) 
- - + - - - - + - - - + - - 2 , 3, 3, 8, 12 (3) 
- - + - - - - + - - - - - - 3 , 3 , 8 , 9 , 1 2 (3) 
- - + - _ - - - _ _ - + - - 3, 3,3,^2 (1) 
- - + - - - - - - . - - - - - - 3, 5, S, 12 (1) 
- - - - + - - + - - - + - - 2 ,3 ,5 ,8 ,12 (3) 
_ _ _ _ + - - + _ _ _ _ - - 3,5, 8, 12 (1) 
- - - - + - - - - - - + - - 3 ,5 ,5 , 12 (1) 
- - - - + - - - - - - - - - 3, 5, S, 12 (1) 
- - - - - - - + - - - + - - 2, 3, 3, 8, 12 (3) 
- - - - - - - + - - - - - - - 3 , 3 , 8, Ï2 (l) 
- - - - - - - - - - - + - - 3,3, S, 12 (1) 
- - - - - - - - - - - - - - 3 ,5 ,8 ,12. (1) 

Questions of redundancy, though not essential here, have a certain 
esthetic appeal, and also a later practical use. I t is always possible, 
for each Ti, to make a selection of properties from among the 14 on 
that line, which have the following 2 properties collectively: 

1. Sufficiency. All the other properties on that line can be deduced 
from those of this selection (that is, set) of properties. 

2. Non-redundancy. No property of this set can be deduced from 
the other properties of this set. 

Such a set will be called a "defining set" of properties for that type. 
All defining sets for each type have been determined. In the last 
column of Table II , a defining set is given for each type, and, in 



124 WILLIAM WERNICK [February 

parentheses, the total number of such sets for that type. (For pur­
poses of brevity, in this column only, we have replaced a» by i). The 
equivalence (as shown in diagram I) of a%, an, at or of a9, au, an is a 
frequent reason for the multiplicity of defining sets for a particular 
type. 

From Table II we can quickly determine whether or not two prop­
erties are completely independent; for example, an and aio, both of 
which are enjoyed by the operator "complement," are completely in­
dependent, since, from T$, TV, aio is independent of ai, and from 
Te, T$, ai is independent of c*io. Similarly we could determine the 
complete independence for groups of properties. 

We may show tha t a given set is a defining set by proving suffi­
ciency and non-redundancy; for example, for 7 \ we test {aj, #12 }• 
From I, ar~»ag, a$, a$, au, an, a$\ from II , Ö12—»«i3, &e, #4» ctn, 0:2, #1; 
therefore this set is sufficient. From Table II there exist types T6, T7, 
T8, T9, which show the complete independence of at, a^, therefore 
this set is non-redundant and thus a defining set. 

Our second main question: "If a\ai what other properties may a 
have?" is obviously answered in Table I I . 

We shall not prove here that these are the only possible types 
(which could be done from our definitions) but shall show by ex­
amples that functions exist for each of the 25 types. We use mainly a 
Boolean algebra of four elements (for Tu and T22 we require eight 
elements) in which 1 is the universal, 0 is the null, and 2, 3 are the 
mutually exclusive, exhaustive elements. The tables for sum, product 
and inclusion are indicated below: 

+ 
1 
2 
3 
0 

1 

1 
1 
1 
1 

2 

1 
2 
1 
2 

3 

1 
1 
3 
3 

0 

1 
2 
3 
0 

C 

1 
2 
3 
0 

1 

Y 
Y 
Y 
Y 

2 

N 
Y 
N 
Y 

3 

N 
N 
Y 
Y 

0 

N 
N 
N 
Y 

1 
2 
3 
0 

1 

1 
2 
3 
0 

2 

2 
2 
0 
0 

3 

3 
0 
3 
0 

0 

0 
0 
0 
0 

An operator for each type will be given by listing the values for 
a ( l ) , a(2), a(3), a(0) in that order. Thus, from the table below, an 
example of an operator of type Zi is the operator for which a ( l ) =*1 
a(2) = l , a(3) = l, a(0) = l, and so on.8 

8 The simplest way to check these is to use the defining sets given in Table II, 
since if an operator has the properties required in the defining set of Ti, then it must, 
from the definition of "defining set," have all the other properties required for an 
operator of type Ti. 
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Ti 

r2 
Ts 

r4 
T, 
Ts 

T7 

r8 
T9 

Tio 
Tu: 
r12: 
Tu: 

:(1, 1,1,1) 
:(1,2, 3, 0) 
• (1,1,1,0) 
:(1, 0 ,0,0) 
(1, 2, 2, 0) 

. (0,3,2,1) 
: (0,0, 0,1) 
:(0, 1,1,1) 
:(0, 2, 2, 1) 
: (2 ,1,0,0) 
(2, 2, 0, 1) 
(2, 1, 3, 1) 
given below 

r14:(2, 2, 1, 3) 
r« : (2 ,2 ,2 ,3 ) 
r „ : (0,1,2,0) 
r« : (0 , 3, 3, 2) 
r18:(i,o, 2,2) 
r19:(i, o, o, i) 
Tîo'- (2, 3, 3, 3) 
7V.(2, 3, 3, 1) 
^2 : given below 
r 2 s : ( l , 3, 3, 2) 
rS4:(3, 2, 2,0) 
r2 8 :(3, 2, 2, 3) 

The 4-element algebra is provably inadequate for an example of 
Tu and JP22, so we use 8 elements, 1, 2, 3, 4, 5, 6, 7, 0, where 1 is the 
universal, 0 is the null element, 2, 3, 4 are the mutually exclusive and 
exhaustive elements, and 5 = 2 + 3 , 6 = 2 + 4 , 7 = 3 + 4 . The tables for 
+ , •, and C for the algebra can be filled in very easily from the above 
description, so they will not be given. The operator definitions are 
now given as before by listing, in order, the value of a ( l ) , a(2), 
• • • , * ( 0 ) . 

Tu: ( 2 , 2 , 3 , 4 , 5 , 6 , 7 , 7 ) ; T22: ( 7 , 2 , 3 , 2 , 3 , 6 , 7 , 2 ) 

Proofs that these operators have the properties listed for their re­
spective types will not be given since they are lengthy and present no 
special difficulties.4 

NEW YORK CITY 

See previous footnote for easiest method of proof. 


