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1. Introduction. The problem of Bolza can be described briefly as 
the most general problem in the calculus of variations for which there 
exists at the present time a theory of relative maxima and minima 
that is comparable in completeness to those of the simpler problems 
in the calculus of variations. This completeness has been brought 
about in the last few years and it is the purpose of the present paper 
to discuss in some detail the results that have been achieved and the 
methods that have been used in obtaining them. I t is impossible to 
give here an adequate discussion of the various aspects of the problem 
of Bolza. Nor is such a discussion necessary, inasmuch as three ex­
cellent reports have been given already which were concerned in 
whole or in part with the problem of Bolza. The first of these reports, 
given in 1936 by Professor Bliss [14],1 is devoted to the study of the 
evolution of problems in the calculus of variations and, in particular, 
the evolution of the problem of Bolza. Professor Bliss pointed out 
that even Euler and Lagrange formulated problems that are of essen­
tially the same generality as the problem of Bolza. Moreover, they 
derived in a formal way the Euler-Lagrange equations that the solu­
tions of the problems must satisfy. The second report was given in 
1937 by Professor Reid [17] and was concerned with boundary value 
problems and their relations to problems in the calculus of variations. 
In particular, he pointed out the various relationships between the 
problem of Bolza and boundary value problems. The third and final 
report was given in 1938 by Professor McShane [22] who outlined the 
progress that had been made in the calculus of variations during 
the preceding twenty-five years. Here the essential achievements 
in the theory of the problem of Bolza were described but nothing 
was said as to how these results were obtained. I t is the purpose of 
the present paper to discuss certain interesting and important aspects 
of the theory of the problem of Bolza that Professors Bliss, Reid and 
McShane of necessity had to omit or describe inadequately in their 
reports. In particular I shall describe to you the basic ideas involved 
in the sufficiency proofs for relative minima. The progress made in 

An address delivered before the Chicago meeting of the Society on April 11, 1941, 
by invitation of the Program Committee; received by the editors June 2, 1941. 

1 Numbers in brackets refer to the list of papers at the end of this paper. 
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the technique of sufficiency proofs not only has enabled us to obtain 
better sufficiency theorems but also has in a sense unified the suffi­
ciency proofs of the fixed end point problems and the variable end 
point problems. 

There are certain phases of the problem of Bolza that I too must 
omit in the present report. I shall not discuss the parametric case ; nor 
shall I have the occasion to describe the Hamilton Jacobi theory and 
the interesting approach to the theory of the problem of Lagrange 
made by Carathéodory. I shall not describe how the theory can be 
modified so as to take care of discontinuous solutions and many prob­
lems that are essentially of Bolza type. Finally I shall omit the im­
portant topic of existence theorems for the problems of Bolza and 
Mayer developed by Graves, McShane and others. References to 
these and other topics can be found in the papers listed at the end 
of the present paper. 

2. Formulation of the problem. The problem of Bolza can be formu­
lated in a number of ways, each of which has its peculiar advantages 
and disadvantages. One of the most useful formulations is the one 
given by Professor Bliss [4] in 1932. This formulation closely re­
sembles the original one given by Bolza [ l ] in 1913 and can be de­
scribed briefly as follows : Consider a class of arcs 

(1) yi(oc), xi ^ x S X2', i = 1, • • • , n, 

in (xyi - - • 3>n)-space satisfying a prescribed set of differential equa­
tions and end conditions 

(2) <£70, y, y') = 0, 7 = 1, • • • , w < «, 

(3) i/v[^i> y(xi)> #2, y(%2)] = 0, /x = 1, • • • , p ^ In + 2. 

We seek to minimize in this class a function of the form 

ƒ 0 , y, y')dx. 

The case when g — 0 is the so-called problem of Lagrange and when 
/ = 0 we have the general problem of Mayer as formulated by Bliss. 
These three problems are equivalent in the sense that each can be 
transformed into either one of the other two types. Of the three prob­
lems, the problem of Bolza appears to be the most convenient. 

The formulation of the problem of Bolza just described has been 
one of the most popular ones in recent years and for many purposes 
it is the most convenient one. However, there is a second formulation 
tha t appears to be more useful for the purposes of the present report. 
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I t is a modification of one given by Professor Morse [3 ] and can be 
described as follows : Consider a class of arcs 

(5) ah, yi{x), x\ ^ x S #2; h = 1, • • • , r; i = 1, • • • , n, 

in axjz-space whose components ah are independent of x and which 
satisfy conditions of the form 

(6) </>y(a, x, y , y') = 0, 7 = 1, • • • , m < n, 

(7) xs = xs(a), yt(x8) = y«(a), s = 1, 2; i = 1, • • • , n. 

We seek to minimize in this class a function of the form 

ƒ» X2 

f(o, x, y, y')dx. 

This formulation differs from the one first described in that certain 
components of our arcs, denoted by ah, are known to be constants. 
If we consider these constants as functions anix) satisfying the differ­
ential equations ai (x) = 0 and if the a's appearing in the functions 
xs(a), yi8(a), g{a) are replaced by a,h(xi), the problem becomes one of 
the type formulated by Bliss. On the other hand, the first formulation 
can be transformed into one of the second type by a simple device. 

I remarked a moment ago that the formulation of the problem of 
Bolza just described is a modification of one given by Morse. I t differs 
from the one given by Professor Morse in that we have introduced 
the parameters ah in the functions ƒ and 07 . Although no generality 
is gained by this change, it has been made for the following two rea­
sons: In the first place in the study of Mayer fields one is led in a 
natural way to the study of an auxiliary problem in which the param­
eters ah appear in the integrand. Thus by introducing these parame­
ters in the original integrand one is able to apply at once to the 
auxiliary problem the results previously obtained. This procedure is 
analogous to the one introduced by Bliss in the study of the second 
variation and simplifies the arguments that have to be made. A sec­
ond trivial advantage is that the class of problems that are immediate 
special cases is enlarged, although the class of problems that can be 
transformed into one of Bolza type is unaltered. 

No discussion of the problem of Bolza would be complete if it did 
not include a consideration of the isoperimetric problem of Bolza [24, 
25]. This problem differs from the one just described in that the arcs 
(5) are required to satisfy, besides equations (6) and (7), a set of iso­
perimetric conditions 
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(9) ƒ» X2 

fp(a, x, y, y')dx = 0, p = 1, 
XX 

Although this problem can be reduced to one of Bolza type, the pres­
ent theory for the problem of Bolza does not give adequate sufficiency 
theorems for this problem. An additional argument is needed. I shall 
discuss this point later. I would like to point out, however, that once 
one has obtained a satisfactory theory for the isoperimetric problem 
of Bolza, these results can be applied at once to a large variety of 
problems. In particular, they can be applied to the usual isoperimetric 
problems and to the more complicated problem of minimizing func­
tions of integrals. The latter problem was proposed by Euler and has 
been studied recently by Brady [23]. 

3. Normality. One of the most important advances in the theory of 
the problem of Bolza has been in the elimination of undesirable as­
sumptions of normality. The concept of normality arises when one 
considers the problem of imbedding a particular arc E satisfying equa­
tions (6) and (7) in a one-parameter family of arcs 

(10) ak(t), yi{x, t), xi(t) = x = x2(t)1 

satisfying these equations. If the family (10) contains E for / = 0, its 
variations 

(11) ah = a* (0), f)i{x) = yit(x, 0), xi = x = x2, 

along E are solutions of equations of the form 

(12) $ 7 ( « , X, Ï], 7]') = <j)yahah + Öyy-rii + Öyy-n' = 0 , 7 = 1, • • • , M, 

(13) rn(x8) = cishah, s = 1, 2; i = 1, • • • , n. 

Unfortunately, not all solutions ahl rji of these equations are neces­
sarily variations (11) of a family (10) that satisfies equations (6) and 
(7) and contains E for £ = 0. Perhaps the simplest criterion that will 
insure this property is the existence of a set of In solutions anj, y]ij{x) 
0 = 1, • • • , 2n) of equations (12) whose determinant 

(14) 
riijiXï) — Ci2hOLhj 

j = 1, • • • , 2n9 

is different from zero. If this criterion is satisfied, the arc E is said 
to be normal relative to the end conditions (7). I t is clear that E will 
be normal if the determinant (14) can be made different from zero 
by a set of In solutions ahj, rjij(x) of equations (12) having ahj = 0. 
If this stronger condition is satisfied, the arc E is said to be normal on 
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the interval #i#2, inasmuch as this criterion is a condition of normality 
for the fixed end point problem obtained by holding the a's fast. An 
excellent discussion of the concept of normality and its consequences 
has been given by Bliss [21 ]. 

Until recently the concept of normality was either ignored or else 
strong normality assumptions were imposed. In fact, it was customary 
to suppose that the arc under consideration was normal on every sub-
interval and in the sufficiency proofs it was further assumed that an 
extension of the arc had this property. The effect of these normality 
assumptions was that the arguments used for simpler problems could 
be carried over to the problem of Bolza with the obvious modifica­
tions. Unfortunately the minimizing arcs of many important prob­
lems that are of the Bolza type are necessarily abnormal on every 
subinterval. For example, this is true for the problem of Mayer. Thus 
the earlier theories for the problem of Bolza were not applicable to 
these special cases. A further objection to normality assumptions is 
that it is difficult in a particular case to verify these assumptions. I t 
would be desirable to proceed without the use of hypotheses of nor­
mality and much has been done in this direction. The sufficiency 
theorems that are now known involve no assumptions of normality. 
Moreover McShane [26] has shown that a minimizing arc necessarily 
satisfies (with multipliers /o^O, ly(x)): (I) the Euler-Lagrange equa­
tions and the transversality condition; (II) the condition of Weier-
strass; (III) the condition of Clebsch, even if the arc is abnormal. 
Graves [5] had shown earlier that these results were true for arcs 
that are normal relative to the end conditions (7) but are not normal 
on every subinterval as was previously supposed. He also gave rather 
complicated analogues of the Weierstrass condition for abnormal arcs. 
As yet it appears to be necessary to assume that the arc under con­
sideration is normal relative to the end conditions in order to obtain 
an adequate discussion of the fourth necessary condition involving 
the non-negativeness of the second variation. However, McShane 
[3l] has announced recently that the fourth necessary condition 
holds when the maximum rank attainable for the matrix (14) is In — 1. 
Moreover he states tha t by means of an example it can be shown that 
the fourth necessary condition in its present form does not hold if 
this determinant is always of rank at most 2n — 2. 

4. Conditions for a minimum. Consider now a particular arc E 
without corners tha t minimizes the function / subject to the condi­
tions (6) and (7). If E is normal, it has associated [24] with it a 
unique set of multipliers ly(x) with which it satisfies the Euler-La-
grange equations 



6 2 M. R. HESTENES [February 

(15) (d/dx)Fy'i = FVi, <t>y = 0, 

and the transversality condition 

2 CX% 

(16) dg + [(F - yiFyddx + F y', dyi\ + I Fahdahdx = 0. 
•^ Xt XI 

Here F=f-\-ly(x)4>y and equation (16) is an identity in dan when the 
differentials dxi, dyn, dx2, dy^ are expressed in terms of dan by means 
of equations (7). This is known as the first necessary condition (I) 
for E. Moreover E must satisfy the condition (II) of Weierstrass, that 
is, at each element {a, x, y, y', I) belonging to E the inequality 

(17) E(o, x, y, y', /, F') ^ 0 

must hold for every admissible solution (F ' ) of the equations 
<t>y(a, x, y, Y') = 0, where 

E = F{a, x, y, Y', I) - F(a, xy y, y', I) 
(18) 

- (F; - yi)Fvfa, x, y, y ,0 . 
From this result one concludes that the further inequality 

(19) Fy'^TTiTTj ^ 0 

must hold on E for every solution (ir) of equations 07î/'t-7ri = 0. This 
condition is known as the condition (III) of Clebsch. As a, fourth neces­
sary condition (IV) the second variation 

(20) 2œ(a, x, r], t]')dx 

of I along E must be non-negative for every solution a^, rji of equa­
tions (12) and (13). The last condition can be replaced by conditions 
involving broken extremals for the second variation. 

A solution 

(21) ah, y%(x), ly(x), xi S x ^ x2t 

of equations (15) is called an extremal. I t is said to be nonsingular if 
the determinant 

(22) 
?y'ivj Vyvi 

is different from zero at each point on it. Every normal minimizing 
arc E determines a unique extremal, also designated by £ , satisfying 
the necessary conditions described above. When these conditions are 
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suitably strengthened they will insure a minimum. For a proper 
strong relative minimum it is sufficient that E belongs to a nonsin-
gular extremal satisfying the transversality condition (16); the 
strengthened conditions: (IIJV) of Weierstrass which requires the in­
equality (17) to hold for all solutions (a, x, y, y', I) of 0 7 = O in a neigh­
borhood N of those on E, and (IV') which requires the second 
variation (20) to be positive for all non-null solutions <Xhf rji(x) of 
equations (12) and (13). If the Weierstrass condition (Iljy) is replaced 
by the Clebsch condition (III) described above, a set of sufficient 
conditions for a weak relative minimum is obtained. In either case 
the condition ( I V ) can be replaced by conditions involving broken 
extremals for Iïia, rj). A detailed account of these and other condi­
tions can be found in the papers of Bliss [13], Hestenes [10, 16], 
Morse [ l l ] a n d Reid [12]. 

5. A consequence of the sufficiency conditions. The sufficiency con­
ditions just described hold even if the arc E is not normal. However, 
it was pointed out by Professor Bliss that these conditions are essen­
tially a set of sufficiency conditions for a normal problem obtained 
by enlarging the class of comparison arcs. Thus as far as sufficiency 
conditions are concerned there is no loss of generality in assuming 
that the problem is normal. The sufficiency conditions described 
above also have a further startling consequence. I t is clear that our 
problem will be unaltered if the integral I to be minimized is replaced 
by an integral of the form 

where F is of the form 

F = ƒ + w7(a, x, y, / ) * 7 . 

If an arc E satisfies the sufficiency conditions described above, the 
multipliers m7 can be chosen so that E affords at least a proper weak 
relative minimum to J in the class of all neighboring arcs satisfying 
the end conditions (7) but not necessarily the differential equations 
(6). Thus in a sense the differential equations 0 7 = O can be discarded. 
The essential step in the proof of this result was supplied by Professor 
Reid [25], who showed that by taking my of the form c07, where c 
is a large positive constant, the quadratic form Fy^iTiTj can be made 
positive definite along E. It remains to show that these multipliers tny 

can be further modified so that the second variation of / is positive 
definite for all non-null admissible variations a*, rji satisfying the end 
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Conditions (13) irrespective as to whether or not they satisfy the dif­
ferential equations (12). That this can be done is an immediate con­
sequence of the sufficiency proofs for the problem of Bolza given by 
Reid [25] and Hestenes [24] as we shall see in a moment. 

As one would expect, a similar result holds in the finite case. Con­
sider the problem of minimizing a function f(x) =ƒ(xi, • • • , xn) on a 
surface <j>y(x) = 0 (7 = 1, • • • , m<n). For a proper relative minimum 
at (x) — (a) it is sufficient that there exist a function F—f-\-ly<j>y such 
that at (x) = (a) one has FZi = 0, </>7 = 0 and FXiXjhihj > 0 for every solu­
tion (h) ?^(0) of the equations <j>yxihi = Q. For a sufficiently large con­
stant c the function G = F+c<t>y</>y will have GXi = 0 and GXiXjhihj posi­
tive definite at (x) — (a). The point (x) — (a) will accordingly afford a 
proper minimum to G(x) relative to all points in a neighborhood of 
(x) = (a). Clearly G(x) =f(x) when </>7 = 0. 

6. Mayer fields. We come now to the consideration as to how the 
sufficiency theorems can be established. Consider first the case when 
g = 0 and none of the parameters an is present. Then our problem be­
comes the problem of Lagrange with fixed end points. The method 
for this case is classical. It consists of constructing a Mayer field. By 
a Mayer field J is meant a region J in ary-space together with a set of 
slope functions and multipliers pi(x, y), ly(x, y) on J such that 
<t>y(%i y y P)=0 and the Hubert integral 

I*(C) = f F(x, y, p, l)dx + (dyi - pidx)Fy
f
i{xy y, p} I) 

J c 

is independent of the path in 7, where F=f-{-ly<t>y. For any arc C in J 
on which 0 7 = 0 one has the relation 

(23) 1(C) = I*(C) + f E(x, y, p, h y*)dx, 
j c 

the last integrand being the Weierstrass E-îunction (18). For an arc E 
in J on which y{ =pi, the relation I*(E)=I(E) holds. Thus if an 
arc C (satisfying </>7 = 0) in J joins the end points of E> one has 
1(C) = P ( C ) = / * ( £ ) = 1(E)y provided the E4unction is non-negative 
along C. Consequently E is a minimizing arc when the Weierstrass 
condition (HAO holds. 

Returning now to the problem at hand let us recall the sufficiency 
proof given by Bliss [4] in 1932. This proof combines results that had 
been established previously by Mayer and Hahn. It consists of three 
steps: Given an arc E0 satisfying the criteria for a minimum it is 
shown first that there is a neighborhood J\ of Eo such that every 
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extremal E in J\ affords a minimum to 1(C) in the class of arcs C 
in Ji joining its end points and having <£7 = 0. Next it is proved that 
I(EQ) is a minimum on the class of extremals in Ji satisfying the end 
conditions (7). Finally it is shown that the end points of an arc C in 
a smaller neighborhood J of EQ can be joined by an extremal E in Ji. 
Hence if C satisfies equations (6) and (7) one has 1(C) ^I(E) è / ( £ o ) , 
as desired. A similar method applied to broken extremals was used by 
Morse [3] in 1931. 

The method just described had to be abandoned because the end 
points of an arc C cannot in general be joined by an extremal E unless 
restrictive normality conditions are satisfied. For example, the 
method is not applicable to the problem of Mayer. In order to 
remedy this situation Bliss and Hestenes [7, 8] devised a method 
that is applicable to the problem of Mayer, but it too was based on 
undesirable normality assumptions. A new method accordingly had 
to be devised. The new method consists essentially of enlarging the 
concept of Mayer fields. Curiously enough it can be considered to be 
a generalization of the method used by Bliss, although to the casual 
observer there may appear to be no connection between the two 
methods. 

Consider now a region J in axy-space and a set of slope functions 
and multipliers pi(a, x, y), ly(a, x, y) on J. Set 

F(a, x, y, y')dx, 

F*(a, x, y, y')dx, 
Xl 

where F=f+l7cf)y and 

F* = F(a, x, y, p) + (yl - Pr)Fv'x(a, x, y, p). 

One then has the formula 

(26) J(C) = J*(C) + f E(a} x, y, yf)dx 
J c 

analogous to (23), in which the last integrand is the Weierstrass 
^-function E = F — F:¥. For a solution C of the equations yl =pi the 
relation J(C)=J*(C) holds. If 0 7 = O on C then J(C)=I(C), where 
7(C) is the function to be minimized. Clearly we can suppose that 
1(C) =J(C) as far as the problem of Bolza is concerned. 

The region J and the slope functions and multipliers pi(a, x, y), 
ly(a, x, y) will be said [24] to define a Mayer field J if the Hubert 
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integral J*(C) is independent of the path in J in the sense that 
J*(C) = J*(C') for any two arcs C, C' in J having the same end values 
[a, xi, y(xi)} X2, y(#2)]. A solution a&, ^i(x) of the equations y/ = £» 
defines an extremal E of / (C) and is called an extremal of the field J. 
The sufficiency proof consists of showing that if an admissible arc Eo 
satisfies the criteria for a minimum, it is an extremal of a Mayer field 
having the following two properties: The Weierstrass E-îunction 
F — F* is non-negative for every solution (a, x, y, yf) of </>7 = 0 having 
(a, x, y) in J. The arc Eo minimizes J*(C) in the class of arcs C satis­
fying the end conditions (7). Thus if an arc C in J satisfies equations 
(6) and (7) one has, by virtue of formula (24), the desired relations 
J(C) è J*(C) }^J*(Eo) =J(Eo). In fact if our problem has been modi­
fied so that the quadratic form Fy'^TiTj is positive definite along Eo, 
as Professor Reid has done, then the arc Eo not only minimizes J(C) 
in the class of arcs C in J satisfying conditions (6) and (7), but affords 
at least a weak relative minimum in the class of all arcs in J satisfying 
the end conditions (7). This establishes the remarks made in §5. 

I remarked a moment ago that the method just described can be 
considered to be a generalization of the method used earlier by Bliss 
[4]. Bliss imposed sufficient normality conditions so that the end 
points of every arc C in J can be joined by an extremal E. Under these 
assumptions the field can be chosen [19] so that the relation 
J*(C) = J(E) holds, provided C satisfies the end conditions (7). Thus 
the inequality J*(C) à J*(Eo) becomes the criterion that Eo minimize 
J(E) in the class of extremal arcs satisfying the end conditions of our 
problem. 

In order to carry out the method just described it must be known 
under what conditions the arc E0 affords a minimum to J*(C) sub­
ject to the end conditions (7). In the theory of Mayer fields we are 
led therefore to the consideration of an auxiliary minimum problem. 
In this new problem the parameters an will in general appear in the 
integrand of J*(C) even if the original function 1(C) does not have 
this property. Thus by introducing the a's in the original integral I 
one can apply at once the theory of the first and second variation to 
our new problem. Nothing new is obtained from the first variation of 
J*(C). The second variation Jjf(a, rj) of J*(C) along Eo is the Hubert 
integral for a Mayer field for the second variation J2(a, rj) along Eo. 
The slope functions and multipliers 7rt(a, x, 77), X7(a, x, rj) of this field 
are the variations along E0 of the slope functions and multipliers pi, 
ly of the original field. In this accessory field the second variation 
Jïipty rj) of J(C) along E0 plays the role of J(C) and is connected to 
7a* (a, v) by the formula 
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(27) J2(a, rj) = J2(a, rj) + I Fyy.(r]i - T T ; ) ^ / - 7r,-)<te 

corresponding to formula (26). This formula in a somewhat modified 
but equivalent form is known as the Clebsch transformation of the 
second variation. Thus the theory of Mayer fields has a counterpart 
in the theory of the second variation. If a Mayer field exists for the 
second variation, then Eo can always be imbedded in a Mayer field 
whose slope functions and multipliers have as their variations along 
Eo the slope functions and multipliers of the given Mayer field for 
the second variation. The existence of Mayer fields therefore has been 
reduced to the question of existence of Mayer fields for the second 
variation. A nonsingular extremal satisfying the transversality con­
ditions and on which the second variation is positive is always an 
extremal of a Mayer field J having the properties described above. 

7. Expansion proofs. The question naturally arises as to whether or 
not Mayer fields are essential in the sufficiency proofs for the problem 
of Bolza. At present I am familiar with only one sufficiency proof 
for a strong relative minimum that is not based directly on the theory 
of Mayer fields. This proof is an expansion proof given by Reid [18, 
20, 25 ] and is a modification and extension of one given by Levi for 
free problems. Although the expansion proof does not make direct 
use of the theory of Mayer fields, there is a close relationship between 
the two methods. In order to emphasize this relationship I shall in­
terpret for you the methods used in the expansion proofs in such a 
way that one can see more clearly wherein it differs from the more 
classical method of constructing Mayer fields. 

Consider now an extremal E0, 

(28) ah0, y%o(x), lyo(x), xi ^ x ^ x2, 

satisfying the criteria for a strong relative minimum. We can suppose, 
with Reid, that the integrand ƒ has been modified so that the quad­
ratic form Fy'iV'kTtfrk is positive definite along E0. Then there is a con­
stant b > 0 such that at each element (a, x, y, y', I) in a neighborhood 
N of those on E0 the inequality 

(29) E(a, x, y, y', I, F') ^ b\\Y' - 3>'||2/(1 + \\Y' - y'||) 

holds whenever 07(a, x, y, Y')=0, where | |y | | = {y'yl)112. This for­
mula also holds whenever (a, x, y, Y', I) is in N, if N is sufficiently 
small. Let Ti(a, x, rj), X7(a, x, rj) be the slope functions and multipliers 
for a Mayer field for the second variation of I whose Hubert integral 
J<F(ay rj) is positive for every admissible variation (a, rj) ^ ( 0 , v) satis-
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fying the end conditions (13). Let J be a neighborhood of E0 in axy-
space and select slope functions and multipliers pi(a, x, y), ly(a, x, y) 
on J such that pi — y%o', /7 = /7o along Eo and in, X7 are the variations 
of pi, ly along EQ. AS in the theory of Mayer fields construct the func­
tions J(C), J*(C) by means of formulas (24), (25). The integral J"* 
is now no longer independent of the path but its second variation 
along Eo is the Hubert integral Jjf(a, rj) of the Mayer field for the 
second variation. The formulas (26) and (27) hold as before. Consider 
an admissible arc C in J satisfying the conditions (6) and (7). By the 
use of Taylor's formula for J*(C), the properties of J£(a, rj) and the 
inequality (29) one finds after considerable manipulation that the re­
lation 

(30) J*(C) - J*(E0) + f Edx è 0 

holds, provided J is taken sufficiently small. By the use of equations 
(26) and J*(E0)=J(E0) this inequality becomes J(C) - J(E0) ^ 0 , as 
desired. 

The expansion proof given by Reid was presented in quite a differ­
ent manner. However, from the above interpretation it is seen that 
it has much in common with the theory of Mayer fields. In particular 
it is seen that the basic property for J*(C) is that its second variation 
along Eo is the Hubert integral for the second variation of 1(C) and 
is positive for all variations (a, rj) ^ (0, rj) satisfying the variational 
end conditions (13). As far as the problem of Bolza is concerned it 
appears that the theory of Mayer fields is the simpler. However the 
expansion method has the advantage that it appears to be applicable 
to problems for which Mayer fields fail to exist. 

8. Further results. The inequality (29) has many applications. For 
example, it can be used to prove the following analogue of Osgood's 
theorem : Let Eo be a nonsingular extremal satisfying the criteria for 
a strong relative minimum described above. There exists a neighbor­
hood J of Eo in a:ry-space such that corresponding to every neigh­
borhood J of Eo interior to J, there is a constant e > 0 such that the 
inequality 1(C) ^I(Eo) + e holds for every arc C in J, not in J', which 
satisfies equations (6) and (7). This result was established by Reid 
[25] by expansion methods. It can also be proved by the use of Mayer 
fields with the help of the relations (26) and (29). 

There is a second important result that is a consequence of the in­
equality (29). I t is a generalization by Reid [25] of a theorem of 
Lindeberg which states that if E0 is a nonsingular extremal (28) satis-
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fying the condition (IIJV) of Weierstrass, and p is a positive constant, 
there is a neighborhood J of E0 such that J(C)—J(EQ) > p / 2 holds for 
every admissible arc C in J for which one has 

/
E(a, x, y, yó, y')dx > p, 

c 

where yó (x) are the slope functions of EQ. By the use of this result 
and one other, that I shall not describe here, Reid was able to obtain 
an elegant proof of the sufficiency theorems for the isoperimetric prob­
lem of Bolza. The sufficiency conditions for this problem are analo­
gous to those for the problem of Bolza. Only two changes need to be 
made. First, the new function F appearing in the various conditions is 
now of the form F=f+\y(x)cf)y+\m+pfp, where Xm+P (p = 1, • • • , p) are 
constants. Similarly g is to be replaced by g+^m+PgP> The second dif­
ference is that the variations o^, rji must satisfy besides the conditions 
(12) and (13), the additional conditions 

7pi(ot, rj) = gPah<Xh + [fp%sahah]s==l 

(31) ÇH 
+ I \fp*hah + fpVili + fpv'M jdx = 0 

where the functions Jpi(a, rj) are the variations along E0 of the func­
tions Jp appearing in the side conditions (9). A second sufficiency 
proof for the isoperimetric problem of Bolza has been given by Hes-
tenes [24]. 

9. Indices of extremals. Returning now to the problem of Bolza let 
us consider a normal nonsingular extremal E0 satisfying the end con­
ditions (7), the transversality condition (16) and the condition (III) 
of Clebsch. If the second variation of I is positive along E0, then E0 

affords a t least a proper weak relative minimum to 1(C). The question 
naturally arises as to whether or not E0 has certain minimizing prop­
erties even if the second variation is not positive along EQ. The answer 
is in the affirmative. The extremal E0 is a minimizing arc for a normal 
isoperimetric problem of Bolza obtained by adjoining conditions of 
the form (9). The least number k of side conditions of this type which 
will determine an isoperimetric problem of Bolza for which I(E0) is a 
minimum will be called the index of the extremal E0 (cf. [15]). The 
condition that the problem remain normal is an essential one since 
otherwise one could adjoin the trivial condition 1(C) =I(EQ) and the 
concept of index would not be a useful one. Clearly the index of EQ is 
zero if and only if E0 is a minimizing arc for the original problem of 
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Bolza. Except in certain degenerate cases the adjoined side conditions 
can be taken to be of the special form 

Ii(ap} y)P\C) = gahahp + [FxSahahp]^ 

(32) C *2 

+ {Fakah + FgiVi + Fy'.rli} dx = 0 

where <XhP, r]iP (p = 1, • • * , k) form a set of k variations satisfying the 
equations (12) and (13) and the elements (a, x, y, y') are those be­
longing to C. The expression Ix(a, rj; Eo) is the first variation of I 
along Eo and is zero for all variations satisfying the conditions (12), 
(13). 

In order to determine the index k of EQ it is sufficient to select the 
fewest number of conditions (9) or (32) preserving normality which 
are such that the second variation I2(a, rj) is positive along EQ for all 
non-null variations an, Vi satisfying the conditions (12), (13) and (31). 
For then the criteria for a weak relative minimum will be satisfied. 
I t will be seen in the following sections that the second variation in 
general can be made positive if the variations o% rji are required to 
satisfy, besides the conditions (12) and (13), a set of k additional con­
ditions of the form 

{wahahp + o)Virjip + o)v'irjip}dx = 0, p = 1, • • • , k, 

where ahP, ViP are k solutions of equations (12) and (13). The fewest 
number of conditions (33) that are effective in this manner is called 
the index of Iifa, rj) and in general is equal to the index of EQ. This 
follows because the equations (33) are the variations along EQ of the 
equations (32). 

10. Indices of the second variation. In order to discuss the index of 
the second variation it is convenient to change our notation somewhat 
and return to the formulation used by Bliss. We consider the class D 
of all continuous arcs 

rj: y)i(x), xi S x ^ x2; i = 1, • • • , n, 

having piecewise continuous derivatives that satisfy differential equa­
tions of the form 

(34) $T(rç, 77') = Myiïji + Nyirji = 0 , 7 = 1, • • • , m < n, 

whose coefficients are continuous functions of x on xixz. On this class 
there is defined a quadratic function 



1942] THE PROBLEM OF BOLZA 71 

ƒ' X2 

2œ(V, ri')dx 

where 2q is a quadratic form in the end values rji(xi), rjifa) of rj and 

2co = Pij(x)rjirjj + 2Qij{x)r)irjl + Rij(x)7]irjl. 

It is assumed that the functions P^ — Pj%, Qa, Rij — Ra are continuous 
on X1X2 and that the determinant 

(36) 
Pij -̂V/Si 

Nyj 0 

is different from zero. The bilinear form / (£ , rj) associated with J(rj) 
is given by the formula 

(37) ƒ' x2 

{<*„& + «*£/ }dx 
3Î, 

and is identical with the first variation of J(rj). We have / (£ , rj) = J "(77, £) 
and J(rj, rf) =J(r]). Finally let £ be the class of all variations rj in D 
satisfying end conditions of the form 

(38) ^(77) = a^rjiixi) + bptmfa) = 0, /x = 1, • • • , p S 2n. 

We are interested in the properties of J(rj) on £. Other classes £ are 
also of interest. The problem of the second variation I^OL, rj) of I de­
scribed in the preceding sections is readily reduced to one of this 
type. 

Many of the results that follow are equally applicable to a quad­
ratic function on an arbitrary linear space. However as we shall be 
interested in the interpretations of these results in the problem of 
Bolza, I shall restrict myself to the problem here described. The re­
sults here given are a combination of the results obtained by Birkhoff 
and Hestenes [15] and Hazard [29]. 

Two arcs J and rj will be said to be J-orthogonal if the relation 
J(%J v) = 0 holds. An arc £ will be said to be J-orthogonal to a subclass 
6* of D if it is /-orthogonal to every arc in £*. /-orthogonal classes 
are defined similarly. By the J-complement of a subclass 6* of £ in £ 
will be meant the totality of arcs in rj in £ that are /-orthogonal to 6*. 
Similarly by the /-complement of an arc £ in £ will be meant the set 
of all arcs in £ that are /-orthogonal to £. The condition that £ be an 
extremal is that it be /-orthogonal to the class of all arcs 77 in O 
vanishing at x\ and #2. This is equivalent to the definition of extremals 
given previously if one identifies extremals which differ only in their 
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multipliers. An extremal is seen to satisfy the transversality condition 
used in the previous sections if and only if it is /-orthogonal to £. 

In the last section the index of the second variation was defined in 
terms of an isoperimetric problem of Bolza. There is a second defini­
tion of index that is a more convenient one and which is more easily 
understood. The index of J(rj) on £ will be called the /-index of £. 
By the /-index of a linear subclass £* of D will be meant the dimen­
sion of a maximal linear subclass of £* on which J(rj) is negative 
definite. 

This number is easily seen to be well defined. In view of the non-
vanishing of the determinant (36) the /-index of £ will be finite 
if and only if the Clebsch condition (III) holds. We shall be inter­
ested only in the case in which /-indices are finite. We shall accord­
ingly assume that the Clebsch condition holds. 

In order to see that the index here defined is identical with the one 
given earlier, let £1, • • • , £ & be a minimal basis for a maximal linear 
manifold £~ in £ on which J(rj) is negative definite. Then an arc rj 
in £ is /-orthogonal to £~ if and only if the conditions /(£«, rj) = 0 
(a = l, - • • , k) hold. It follows from our choice of £~ that / ( ^ ) ^ 0 
for every arc in £ satisfying these isoperimetric conditions. Moreover 
no fewer conditions have this property. The two concepts of index are 
therefore identical. There is a further defining property of the /-index 
of a class £*. The /-index of £* is equal to the dimension of a maxi­
mal linear subclass of £* on which /(rç) S 0 and which contains no 
arc rjj^O that is /-orthogonal to £*. This is a very useful criterion 
for the determination of indices. 

One of the basic problems is the determination of the relations be­
tween the /-index of £ and that of a linear subclass £* of £. This 
problem can be completely solved if £* is related to £ in a special 
way. For want of better terminology, these subclasses will be called 
special subclasses of £. Let £* be a linear subclass of £ and denote 
by £0* the set of all arcs in £* that are /-orthogonal to £*. The class 
£* will be called a special subclass of £ if every arc rj in £ that is 
/-orthogonal to £0* is a sum 771 + 772 of an arc rji in £* and an arc r}2 

that is /-orthogonal to £*. For example the subclass £° of all arcs in £ 
vanishing at x\ and X2 is a special subclass of £. Here the condition 
that £° be a special subclass of £ is equivalent to the condition that 
the end points of every arc 77 in £ that is /-orthogonal to the extremals 
that vanish at xi and xi can be joined by an extremal. Every linear 
subclass of £ containing £° is a special subclass of £. In fact any 
linear subclass of £ of finite dimension or which is the /-complement 
of such a class is a special linear subclass of £. 
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The principal result upon which the determination of indices and 
upon which many comparison theorems are based is the following one : 
Let £* be a special linear subclass of £ and as before denote by £o* the 
class of all arcs in 6* that are /-orthogonal to £*. Let m be the dimen­
sion of a maximal linear subclass of £0* whose non-null arcs are not 
/-orthogonal to £. If the /-indices of £* and its /-complement in £ 
be denoted by the symbols k* and k', respectively, then the J-index k 
of £ is given by the formula k = k*-\-k'-\-/m. 

As a first example of the application of this result let us consider 
the problem of determining the /-index of the class £° of all arcs rj 
in D vanishing at x\ and X2. For convenience of description it will be 
assumed that 77 = 0 is the only extremal that vanishes identically on 
any subinterval of X1X2. This is a normality condition and need not 
be assumed if one modifies the definition of conjugate points given 
below. A point xz on xi<x<x% will be said to be conjugate to xi if 
there is an extremal 77 9e 0 that vanishes at Xi and x$. The number h 
of linearly independent extremals in a maximal set that vanish at x\ 
and #3 will be called the order of xz as a conjugate point of X\. Let 
£1, • • • , fm be a maximal set of linearly independent arcs in £° that 
are identically zero on a subinterval Xzx% of X1X2 and are identical with 
an extremal on XiXz. The number of these arcs is equal to the sum of 
the orders of the conjugate points of x± between xi and x2. These arcs 
form the basis of a special subclass £* of £° whose index is zero. No 
arc £ 9^0 in £* is /-orthogonal to £°. Moreover the index of its /-com­
plement in £° is also zero. The /-index of £° is accordingly equal to 
the dimension m of £* and hence is equal to the sum of the orders 
of the conjugate points of X\ between xi and x^. 

Returning now to the original class £ we observe that its /-index 
is the sum of three quantities. The first of these quantities is the index 
of the class £° just described, that is, the sum of the orders of the 
conjugate points of Xi between x% and X2. The second quantity is 
the /-index of the class of extremals in £, that is, the /-index of the 
/-complement of £° in £. The third quantity is the dimension of a 
maximal linear class of extremals vanishing at xi and #2 which con­
tains no extremal £ ^ 0 that satisfies the transversality conditions 
for £. 

As a third example consider the class £* of all arcs in £ form­
ing the /-complement of the class of all arcs vanishing at a set of 
points t0 = xi<tx< • • • <tr<tr+i~x^ These points can be chosen so 
close together that the index of the /-complement of £* is zero and 
such that every arc in £* that is /-orthogonal to £* is also /-orthogo­
nal to £. The /-index of £ is therefore identical with that of £*. 
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Moreover the class £* is composed of the totality of broken extremals 
in £ with corners a t the points /i, • • • , tr. This result identifies our 
index with the one introduced by Morse. 

Examples of this type can be multiplied in many ways so as to ob­
tain comparison and oscillation theorems which relate the /-indices 
of various subclasses of £. Other oscillation and comparison theorems 
are also easily obtained. For example, if a second quadratic function 
J*(17) satisfies the condition J*(r\) ^J(t)) on £, the J*-index of £ can­
not exceed its /-index. 

Boundary value problems arise in the calculus of variations when 
one wishes to obtain relationships between J(rj) and a second quad­
ratic functional J*(rj). The function /*(?;) is usually taken to be of 
the form 

Kij{x)rjirjjdx. 

We shall assume that J*(rj) is positive on D although this assumption 
is not essential. An arc ^ 0 in £ will be called a characteristic arc if its 
J*-complement in £ is identical with its /-complement in 6. If £ is a 
characteristic arc, there is a value a such that / (£ , 77) =o-/*(£, rj) on £. 
In fact er = / (£ ) / /* (£) , and £ is an extremal for J —a J*. The number 
of linearly independent characteristic arcs in a maximal set deter­
mining the same characteristic value a will be called the order of <r. 
It can be shown that the /-index of £ is equal to the sum of the orders 
of the negative characteristic values. Thus it is seen that the theory of 
indices here presented is closely related to boundary value problems. 
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