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1. Introduction. Let 

L(u) + \u = u^ + P 2 0 ) ^ ( n - 2 ) + • • • + Pn{oo)u + \u = 0, 
( 1 ) W,(u) = 0, j = 1, 2, • • • , », 

be a given linear differential system of the nth order subject to the 
following hypotheses: 

(i) the functions P2 , • • • , Pn are continuous and have continuous 
derivatives of all orders on (0, 1) ; 

(ii) the boundary conditions, consisting of n linearly independent 
linear equations involving w(fc)(0), uw{\), (fe=0, 1, • • • , n — 1), are 
regular ;f 

(iii) X = 0 is not a characteristic value, so that the system L(u) = 0, 
Wj(u) = 0 is incompatible. 

Under hypotheses (i), (ii), it is well known that (1) possesses an 
infinite sequence of characteristic values {X;} (arranged in order of 
increasing moduli) and a corresponding sequence of characteristic 
solutions {ui(x)}. Moreover, the values \i are also the poles of the 
Green's function G(x, y; X) associated with (1), and these poles are, 
in general, simple when |X»| is large.J Furthermore, the system 
L'(v)+\v = 0, Wj (v) = 0, which is adjoint to (1), has the same char­
acteristic values as (1), and a corresponding sequence of characteris­
tic solutions {vi(x)}. 

For a given f unction ƒ (x), the Birkhoff series associated with (1) 
is defined by 

^ A Jlf(y)vi(y)dy 
(2) 2^i ~r Ui(X), 

i-i J\Ui(y)vi(y)dy 

provided the poles of G(x, y\ X) are simple. In the case of multiple 
poles Xa, the corresponding terms in (2) are to be replaced by the 
terms f0f(y)Ra(x, y)dy, where Ra(xy y) is the residue of G at X=X«. 

* Presented to the Society, December 30, 1937. 
t For a definition of this term see G. D. Birkhoff, Transactions of this Society, 

vol. 9 (1908), pp. 373-395; p. 382. 
Î This is always so in the case when n is odd, or when n is even and the system is 

self-adjoint. When n is even and the system is not self-adjoint, there may be an 
infinite number of double poles. 
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The partial sums of this series will be denoted hereafter by BN(X). 
On the other hand, any arbitrary linear combination of the form 

N 

will be called "an arbitrary Birkhoff sum" or "a sum of Birkhoff 
type." 

In this paper we propose to consider the possibility of approximat­
ing simultaneously a given function ƒ(x) and its first m derivatives by 
sums of Birkhoff type, in the form 

| ƒ O) — SN O) I ^ €jvr, 

uniformly on (0,1), for k = 0 ,1 , • • • , m, with lim^oce^ = 0. The results 
obtained will then be used to derive certain theorems relating to the 
corresponding approximations when the sums BN(X) themselves are 
used. In this latter connection, we should mention the results given by 
Stone* relative to the derived series of Birkhoff, which, however, are 
different from those developed here. 

2. Approximations using SN(x), when m = n — 1. Let 
N 

VN(X) = S <M*<(ff) 
t - i 

be an arbitrary Birkhoff sum of the iVth order, and consider the sum 

SN(x) = 2J 7 — r r «<(*)• 
t=i (— A;) 

Since Ui satisfies (1) when X =X», it follows that 
N a . N 

L(SN) = J2 -—%— L{ui) = X) 0»«* = °N, 
t - l (~~ X;) i„i 

Wj(SN) = Z —^— W,<Ui) = 0, j = 1, 2, • • • , ». 
i^l ( — Ai) 

That is, Sx satisfies the nonhomogeneous system L(y) — <TN, W,-(y) = 0. 
But this system, in view of hypothesis (iii), has a unique solution, 
and hence, if G(x, £) is the Green's function associated with L(y) = 0, 
Wj(y) = 0 (not to be confused with G(x, y; X)), we can write 

(3) S„\x) = e*®—G(x, Ö « , O ^ g l , 
J o dx" 

* M. H. Stone, Transactions of this Society, vol. 28 (1926), pp. 695-761; pp. 740-
761. 
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for k = 0, 1, • • - , n — 1. The functions dhG/dxh in this expression exist 
and are known to be uniformly bounded on 0 ^ x } %S. 1 for all values 
of k in question. 

In regard to the f unction ƒ (#), let us assume that it satisfies the n 
auxiliary equations W3(f)=0, 0 ' = l , 2, • • • , n). This assumption is 
necessary if the errors of approximation in question are to converge 
to zero uniformly on (0, 1).* With this understanding, the function 
f(x) is the unique solution of the nonhomogeneous system L(y) = £(ƒ), 
Wj(y) = 0 , and hence 

(4) ƒ<*>(*) = f £ ( ƒ ) * < ; ( * , { ) « , * = 0, 1, • • • , n - 1. 
J o OX* 

The functions dhG/dxh being uniformly bounded on O^x, £ ^ 1 for 
all values of k concerned, in the form | dkG/dxk\ ^ G, it follows , from 
(3) and (4), that 

L 

(5) 
ox1* I •/ o 

^G f \L(f) - <xN\ d£, 0 ^ x ^ 1, 
J o 

for k=0, 1, • • • , n — 1. 
From (5) it is clear that the errors \fw — SN(1C) | converge to zero 

uniformly on (0, 1), for k = 0, 1, • • • , n — 1, provided the sums aN 

converge in the mean (with index 1) to the function L(f). But the 
general theory of convergence in the mean tells us that such sums <TN 
do exist, provided L(f) is integrable on (0, 1). For, in that case, it is 
possible to define an absolutely continuous function <j> to satisfy 
fQ | L(f) — <j>\ dx<e where e>0 is arbitrary.f The function cj> belongs to 
the Lebesgue class L2, and hence there must exist sums <JN which 
converge in the mean to <f> with index 2,$ and, therefore, also with 
index 1 by virtue of Schwarz's inequality. These facts, together with 
the inequality 

* If the equations Wj(J)=0 are not satisfied, it can be shown that the sums 
S™ converge to ƒ<*>-WitfKr«(*)- • • . -Wn(f)G^(x) rather than to ƒ<*>, where 
Gi(x) is the solution of L(y) = 0, Wj(y) = 0, C/Vi), Wi(y) = 1. 

t See, for example, E. C. Titchmarsh, The Theory of Functions, Oxford, 1932, p . 
376. 

% As sums uN we may choose the partial sums of the Birkhoff series for L(J). These 
sums converge in the mean (with index 2) under the same hypotheses as will insure 
convergence in the mean of the Fourier series. This fact follows as an immediate 
consequence of Theorem X I I I of Stone's paper, loc. cit., p. 723, and Minkowski's 
identity. 
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f | L(f) - <rN | dx ^ f | L(f) - <j> | dx + f | <t> ~ <TN | dx, 
J o J 0 «̂  0 

prove the truth of the assertion. The condition that L(f) be integrable 
is equivalent, of course, to the requirement tha t / (x) and its first n — 1 
derivatives be continuous and f(n)(x) be integrable. Thus we have 
proved the following result. 

THEOREM A. If f(x) satisfies the auxiliary equations Wj(f)=0, 
(7 = 1,2, • • • , n), and L(f) is integrable, then for every e > 0 there exists 
a sum SN(x) of Birkhoff type such that \fiJc)(x) —SN\X) \ < e uniformly 
on (0, 1) for k = 0t 1, • • • , n— i . 

3. The general case, when m = pn — l. We shall next show how the 
results of §2 may be extended to the case m = 2n — 1. It will then be 
obvious that the results may be extended to the general case m = 
pn — 1, where p is any positive integer. 

Let <TN be defined as in §1, and let SN(X) be redefined by the equa­
tion 

sN(x) = £ -7—rrr "*(*)• 
t - i (— X») 

Also let TN denote the sum 
^ ai 
2-, - 7 — — "«(*) • 
i=l \— Ai) 

Then, since L(TN) =<TN and L(SN) = TJV, it is clear that 

(6) 7 > ° = f w ( 0 — G ( M ) « , ^ = f T * ( Ö ^ G ( M ) < * É , 
t / 0 O X * %/ 0 O l f c 

for &=0, ! , • • • , w — 1. 
In regard to the function ƒ(x), we must now assume that it satisfies 

the 2n auxiliary conditions 

(7) W,(J) = 0, Wi(L(f)) = 0, j = 1, 2, • • • , n. 

Then, letting F(x) denote the function !,(ƒ), we can write 

F<*>= f L(F)c?-rG(x,S)dS, ƒ<*> = f1F®-f-G(x,S)dli. 
J o dx* J 0 dxfc 

From these results and (6), it follows that 



580 W. H. McEWEN [August 

(8) l /^ -sJHsGfV-Ti r l * , 
•J 0 

(9) \F^-rf\^G C\L{F)-cN\di. 
J o 

On putting k = 0 in (9) and substituting the result in (8), we get 

(10) | /k) -SNk)\^G' f | L(F) - vN | dg, * = 0, 1, • • • , n - 1. 
J o 

Again, from the identity 

(il)/** - 5 ^ - (F - T*) - P2(/ (n"2) - 5 r 2 ) ) rn(f-sN), 

we obtain, with the help of (9) and (10), 

J o 

Likewise, after differentiating successively in (11), we can show that 
the errors |/<*+1>-SV (n+1) | , • • • , \f2n~l)-SN^2n~l)\ are similarly 
bounded. Since F=L(f), it will be convenient to denote L(F) by 
L2(f). Hence, what we have proved may be restated as follows: 

\fW - S?\ <. K' (l\L*(f) ~ **\di;, 0 * * * 1 , 
J o 

for Jfe = 0, 1, • • • , 2 t t - l . 
In the general case, when m=pn — lt we define SN(X) by the equa­

tion 

SN(OC) = ]T -—%—-Ui(x). 
i=1 ( - X,)* 

We must now assume that fix) satisfies the pn auxiliary conditions 

(12) Wt(J) = 0, Wf(.L(f)) - 0, • • •, Wtfr+{f)) = 0, ; = 1, 2, • • •, ». 

Then it may be shown that 

(13) \fm -sT\ * * f^ £*(/)-<* I # 
•J 0 

uniformly on (0, l ) f o r & = 0 , 1, • • • %pn — \. 
Thus we can state the following generalization of Theorem A. 
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THEOREM 1. If f{x) satisfies the pn auxiliary equations (12) and 
Lp(f) is integrable, then for every e > 0 there exists a sum SN(X) of Birk-
hoff type such that \f{k)(x) — SN

(k) (x)\ <e uniformly on (0, 1) for 
k = 0, 1, • • • , pn — 1. 

4. Approximations using BN(x). In this section we shall deal only 
with the case when m = n — 1, although the results obtained hold gen­
erally when m = pn — 1. 

Let <TN be identified with the partial sum of the Birkhoff series for 
L(f). Then, if Xt is a simple pole of G(x, y; X), 

JtUflvJy 
at = JluiVidy 

From Green's identity and the fact that Wj(f) = 0, (j = 1, 2, • • • , n), 
we have 

ƒ. [viL(J)-fL'(vi)]dy = 0. 
0 

But Vi satisfies the adjoint system when X =Xi, so that L'(vi) +X»v< = 0, 
and hence JQViL{f)dy^flJLf{vi)dy=-\iflJvidy. That is, 

0*_ _ fjfvidy 

(— X<) fluiVidy 

which means that — a</X» is a coefficient of the partial sum of the 
Birkhoff series forf(x). 

On the other hand, if X* is a multiple pole of G(x, y; X), the corre­
sponding terms a<«»- in a*̂  must be replaced by f L(j)Ri(x, y)dy, where 
Ri(x, y) is the residue at X =X». But from the known properties of the 
residue, we can easily infer that 

f £(/)*<(*, y)dy/(- X,) = f ƒ*«(*, y)dy. 
J 0 ^ 0 

It follows, then, that if *SV(x) is defined by 

N a< 

SN(X) = 23 7—TT «<(*), 

with the understanding that the terms —aiUi/\i are to be replaced by 
f0L(f)Ri(x, y)dy/(-\4) in the case of multiple poles, the sum SN(X) 
is identical with BN(x), the partial sum of the Birkhoff series for f(x). 
The discussion given in §2, with appropriate modifications for the case 
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of multiple poles, will then apply to B^(x) to show that the errors 
\f(k) — BN<k) | converge to zero uniformly on (0, 1) for fe = 0, 1, • • • , 
n — 1, provided the partial sums of the Birkhoff series for L{f) con­
verge in the mean (with index 1) to L(f) as N—>oo. But, as we have 
already noted in the third footnote on p. 578, this latter convergence 
is assured if L{f) is integrable. 

There is no difficulty in extending these results to the case 
m=pn — l. Hence we can state our next theorem. 

THEOREM 2. If f(x) satisfies the pn auxiliary equations (12) and 
Lv(f) is integrable, then the partial sums of the Birkhoff series for f(x) 
are such that limN^^B^ (x) =f(k)(x) uniformly on (0, 1), for 
& = 0, 1, • • • , pn — 1. 

The inequalities (13) enable us to write 

\fW-sF\£Kmax \LP(f)-*N\ 

uniformly on (0, 1), for £ = 0, 1, • • • , pn-1. But ƒ(*>«>-Sy*») 
can be expressed by an identity analogous to (11), in the form 
f(Pn)_sN(pn) s (/,*(ƒ)—o-tf)+ . . . ; j n which the terms on the right 
are all uniformly bounded by constant multiples of max | Lv(f) —a*iv|. 
Hence, there must exist a constant ÏT such that 

(14) | ƒ w - S? | é i f max | £*(ƒ) " w | 

uniformly on (0, 1), for & = 0, 1, • • • , pn. This inequality, with the 
help of Milne's results relating to the degree of approximation of the 
Birkhoff series,* enables us to state the following theorem. 

THEOREM 3. If f(x) satisfies the pn equations (12) and Lp(f) and 
its first g —1 derivatives vanish at 0 and 1, its qth derivative being con­
tinuous and of limited variation on (0, 1), then the partial sums of the 
Birkhoff series for j\x) are such that \f(k) —BN

(k) | <K/Nq uniformly on 
(0, 1), for & = 0, 1, • • • , pn, where K is a constant independent of N. 

MOUNT ALLISON UNIVERSITY 

* W. E. Milne, Transactions of this Society, vol. 19 (1918), pp. 143-156, The­
orem I. 


