
ON THE VALUES ASSUMED BY POLYNOMIALS* 
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The equation 

ƒ ( * + * ) - ƒ ( * ) , 
(1) : = * 

h 
where f(x) is an integral function and k is an independent complex 
variable, defines h as a many valued function of x and k. The branches 
of this function h(x, k) possess a simple property when f(x) is a poly­
nomial; and conversely, when the branches of h(x, k) have the prop­
erty, f(x) must be a polynomial. I t is the object of this paper to 
exhibit the property, prove that it is characteristic for polynomials, 
and extend the results to polynomials of several variables. 

1. Polynomials in one variable. For a polynomial 

ƒ 0 ) = a0x
n+1 + ai%n + - - - + fln+i, 0o ?£ 0, » > 1, 

equation (1) becomes 

hn+ [ (»+ 1)* + ai/flo]*""1 + • • • - k/a0 = 0, 

and the n branches hi(x, k) of the function h(x, k) satisfy the equation 

n 

X) hi(x, k) = — (n + l)x — ai/aQ. 
l 

For n = l we readily find that h= —2x — ai/a0+k/ao. Hence we have 

— £ * < = - ( » + 1), ^ 1 , 
dx i 

as a property of polynomials of degree n + 1. For w = 0 n o function h 
is defined by (1). 

THEOREM I. Letf(x) be an integral f unction. If there exist n functions 
hi(x, k), - • • , hn(Xy k) analytic, distinct, and nonzero on a region in the x 
plane and a region in the k plane, and which on these regions are such 
that 

f(x + hi(x, k)) - ƒ ( » 

hi(x, k) 
and 

= *, i = 1, 

* Presented to the Society, February 26, 1938, under the title A characterization 
of the values assumed by polynomials. 
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(2) ^ !><(*, *)== - ( » + l ) , 
dx i 

then f (x) is a polynomial of degree n+1. 

The n functions A» of our hypothesis satisfy 

(A - *i)(* - *i) ' * • (A - An) = 0 

= hn - Pxh
n~l + . . . + ( - lyPih"-* H + ( - l)nPn. 

In order to prove the theorem we establish relations between the ele­
mentary symmetric functions Pi and their partial derivatives. Every 
function hi satisfies the equation 

/ dh\ f(x) - k dh 

\ dx/ A dk 

We may derive this by differentiating both members of (1) with re­
spect to xy obtaining 

/ dh\ dh 
f(x+h)(l+-)=f(x) + k-

\ ox/ ox 

and with respect to k obtaining 

dh dh 
f'(x + A) — = h+ k — • J dk dk 

Since A 7^0, dh/dk^O, and we may solve this last equation for 
f'(x+h); and the substitution of the value thus obtained into the 
preceding equation yields (4). We shall make use of the fact that 
dh/dk^O later in the proof. From (4) we see that 

y/— —\ = — * 1 T(I \ dhi\ 
i\dk hj~ dk Pn ƒ ' ( * ) - * i \ dx)' 

and since by hypothesis ^^dhi/dx = —(n+1), this reduces to 

! * dPn
 =

 1 

Pn dk k - ƒ'(*) 

We now proceed to deduce a second equation connecting the P 's 
and their partial derivatives; namely, 

dPi+i dPi 
_ L = _ {n _ ,• + 1 ) P . + ( i _ f{x)) 

dx dk 
II 

i = 1, 2, • • • , n — 1. 
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To accomplish this observe that 

dx 
+ (n - i)Pi = 5*1*2 «F('+S) 

where S denotes the sum of the terms arising by choosing the i indices 
of the h-iactors in all possible ways among the numbers 1,2, • • • , n, 
and then letting j run through the remaining n — i numbers. The 
right-hand side of this equation can be written in the form 

ttA...fc/i(1+^)_t(.+fo}-
I y„i\ dx/ y.i \ dx/) 

With the aid of (2) and (4) the expression now becomes 

shh* • • • hA [»- (» + i)] + (*-ƒ'(*))£ 7- -rr 
{ j»i hj dk ) 

dPi 
= - p , + (*_ƒ'(*)) — 

a& 
Hence II follows at once. 

I t will be convenient to change the notation, replacing i by n — i. 
Then 

^ p ^ = - a + i)pn_, + (* - /e*» ^ p , 
II* 

i = 1, 2, « • • , » — 1. 

From I it follows that 

Pn = <t>(x)(k-f{x)) 

where 0(x) is analytic in the given domain of the #-plane and does not 
vanish there. Observe that Pn9^0 since no hi(x, k) vanishes, and, 
since the left-hand side of I is analytic in the given domain, k—f'(x) 
cannot vanish there 

We proceed to show that Pn-% is a polynomial in fe, at most of de­
gree i+1, with coefficients which are analytic functions of x in the 
given domain, or else that Pn-i vanishes identically. We use the 
method of mathematical induction. First, we know that Pn is linear 
in k. Next, observe that from II* it follows that 

dPn- •*+i 

dk (k - f(x)y+l dx (k - /Or))*2 

Assume the statement true for Pn, Pn-u • • * > Pn-i+i- Then the 
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right-hand side of this last equation can be represented by partial 
fractions 

Ai+2 A 2 

where the A, are functions of x analytic in the given domain. The 
fraction whose denominator is k—f'(x) is absent, because the degree 
of the numerator, dPn~i+\/dx is at most i. Hence on integrating we 
have 

±n—i A i+2 A 2 

+ iK*0. (k - /'(a))**"1 (* + 1)(* - A*))*1 * ~ ƒ'(*) 
This completes the proof. 

If we substitute (f(x+h)—f(x))/h for k in (3), and multiply both 
members by h, we have an equation of the form 

(5) A«+* + E Cpgr(x)h*f(x)*f(x + hY = 0, p + q + r^n+1. 

This equation is of positive degree in f(x+h). For, if it were of degree 
zero, h would depend on x alone and dh/dk = 0. We have seen above 
that dh/dk^O. Thus, for constant x,f(x+h) coincides with a branch 
of an algebraic function of x+h; and since ƒ is integral, the algebraic 
function is a polynomial, and so i s / . 

There remains only to show that ƒ is a polynomial of degree n + 1. 
Since (1) defines n distinct, nonzero elements hi for/ , the degree of ƒ 
is not less than n + 1. In addition, we readily see the degree of ƒ cannot 
exceed n + 1. In fact, if we substitute the Taylor expansion off (x+h) 
in (5), the resulting polynomial in h must be identically zero, and this 
can happen only if the degree of f (x+h) in h does not exceed n+1. 

2. Polynomials in N variables. The above characterization of 
polynomials of a single variable finds its analogue for polynomials of 
several variables as follows: The equation (1) is replaced by 

, fx ƒ(*! + klh> X* + k*h> ' ' " > °°N + kNh) - / O i , Xi, • ' • , XN) 
(V) • = k 

h 
with Xi, • • • , XN, ki, - • • , few, k independent complex variables. If we 
denote by Z) the operator kid/dxx+k2d/dx2+ • • • +kNd/dxN, we may 
assert that if f(xu • • * , XJV) is a polynomial in #i, • • • , XN, of total 
degree n + 1, then there exist n analytic, distinct, nonzero elements 

hi(xi, • • • , #jv; &!, • • • fe\r; &) 

which satisfy (1;) and are such that 
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(2') Z > L * « - - ( » + l ) . 
1 

This fact is readily established if we expand ƒ(xi+kih, • • • , Xx+kxh) 
by Taylor's theorem, obtaining 

f(xi + kik, • • • , xN + kNh) 

= ƒ(*!, • • • , XN) + hDf + • 

Thus (1') may be written 

DH 
h"+(n + 1) — A»-1 -i 

••+-D<f+---+———D"+y. 
t\ (n + 1)! 

( » + l ) ! D*f 

»! Dn+Ïf 

and since Z>"+2/ss0, Dn+1f 

n / £)«ƒ>, /Dn+1f\ 

THEOREM I I . Letf(xu • • • , ##) be an integral function. If there exist 
n functions hi(xu • • • , #ivî &i, • • • » fov; &), analytic, distinct, and non­
zero on a region in (xu • • • , XN\ ki, • • • , fa; k) space and which on this 
set are such that they satisfy (1') and 

Dythi= - ( f i + 1 ) , 
x 

then ƒ is a polynomial of total degree n+1. 

The proof of Theorem II is identical with the proof of Theorem I, 
where the counterpart of equation (4) is 

{Df - k) dh 
(4') (1 + Dh) = \ -

h dk 

and those of I and II are, respectively, 

1 dPn 1 
I' 

P« dk Df 

dP 
II' DP»! - - ( » - , ' + 1)P, - — (Dj-k). 

dk 

To establish (4') from (1') we operate on both members with D, get­
ting 
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Df+kDh = Df(x1+k1h, • • • , xN+kNh) 

d 
= 22 ki / (*i + kih, • • • , xN + kNh) 

dXi 

-(i>«x: 
\ i i 

i dXj + kjh 

( dh\\ 
•/Oi + kih, • • • , xN + kNh) I kj J J 

+ E ^ 9 f(x{ + k<h) 
i ox, + kih 

d 

dXj + kjh 

• /Oi + kih, • • • , %N + kNh) J (1 + Dh). 

Differentiating both members of (1') with respect to k, we have 

dh 

dk 

d ( x-* d ) 
k — h + h= < l^ki ——- f(xi + kih, • • • , xN + kNh) > 

dk \ ox, + kih ) 
and eliminating the term in the bracket yields equation (4')-

Since the operator D behaves for its variables like the operator 
d/dx for a single variable, all the reasoning of the previous section 
can, from this point on, be used verbatim, proving Theorem II . 
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