p-ALGEBRAS OF EXPONENT p*

BY NATHAN JACOBSON†

A. Albert and O. Teichmüller have recently investigated the structure of p-algebras, that is, normal simple algebras of degree p^e and characteristic p.‡ In particular they showed that a necessary and sufficient condition that such an algebra have exponent p is that it be similar to an algebra A having a maximal subfield $C = F(c_1, c_2, \cdots, c_m)$, where $c_i^p = \gamma_i \epsilon F$, the underlying field. The latter algebra is cyclic. It is the purpose of this note to apply some results of my paper Abstract derivation and Lie algebras $\{ \}$ to obtain a new generation of A. For m=1 this generation is more symmetric than the cyclic generation. We obtain a condition that A be a matrix algebra in terms of the new generation, and when m=1 we have as a consequence a reciprocity law for fields of characteristic p.

Let A be a normal simple algebra of degree p^m (order p^{2m}) over a field F of characteristic p and suppose A contains the maximal subfield $C = F(c_1, c_2, \dots, c_m)$, $c_i^p = \gamma_i \epsilon F$. Let D be an arbitrary derivation of C over F, that is, a mapping $x \rightarrow xD$ of C into itself such that

$$(x + y)D = xD + yD,$$
 $(x\alpha)D = (xD)\alpha,$
 $(xy)D = (xD)y + x(yD),$ $\alpha \epsilon F.$

It is known that D may be chosen so that the only elements z such that zD=0 are those of F,\parallel and for a D of this type I have shown that

(1)
$$x(D^{p^m} + D^{p^{m-1}}\tau_1 + \cdots + D\tau_m) = 0, \quad \tau_i \in F,$$

^{*} Presented to the Society, April 10, 1937.

[†] National Research Fellow.

[‡] A. A. Albert, On normal division algebras of degree p^e over F of characteristic p, Transactions of this Society, vol. 39 (1936), pp. 183–188, and Simple algebras of degree p^e over a centrum of characteristic p, Transactions of this Society, vol. 40 (1936), pp. 112–126. O. Teichmüller, p Algebran, Deutsche Mathematik, vol. 1 (1936), pp. 362–388.

[§] Transactions of this Society, vol. 42 (1937), pp. 206-224, referred to as J. || R. Baer, Algebraische Theorie der differentierbaren Funktionenkörper. I, Sitzungsberichte Heidelberger Akademie, 1927, pp. 15-32.

or

$$x^{(p^m)} + x^{(p^{m-1})}\tau_1 + \cdots + x'\tau_m = 0$$

for all $x \in C$, but no equation of the form

$$x^{(r)} + x^{(r-1)}b_1 + \cdots + x'b_{r-1} + b_r = 0, \quad b_i \in C,$$

can hold if $r < p^m$.* I have shown also that any derivation in a simple subalgebra of a normal simple algebra may be extended to an inner derivation in the latter.† Thus there exists an element d in A such that $[x, d] \equiv xd - dx = xD$ for all $x \in C$.

We note that

(2)
$$xd^{k} = d^{k}x + C_{k,1}d^{k-1}x' + \cdots + x^{(k)},$$

where the coefficients are those of the binomial theorem, and hence $xd^{p^i}=d^{p^i}x+x^{(p^i)}$. It follows from (1) that $(d^{p^m}+d^{p^{m-1}}\tau_1+\cdots+d\tau_m)$ commutes with every x, and since C is a maximal subfield of A, $(d^{p^m}+d^{p^{m-1}}\tau_1+\cdots+d\tau_m)=c\epsilon C$. Deriving with respect to d (taking commutators), we have [c,d]=0, and so $c=\delta\epsilon F$ and

(3)
$$d^{p^m} + d^{p^{m-1}}\tau_1 + \dots + d\tau_m = \delta.$$

We assert that C and d generate the whole of A. Suppose

(4)
$$d^{r} + d^{r-1}b_{1} + \cdots + b_{r} = 0, \quad b_{i} \in C,$$

is an equation of least degree having coefficients in C and satisfied by d. If $x \in C$ by (2)

$$d^{r-1}x_1 + d^{r-2}x_2 + \cdots + x_r = 0,$$

where, if we use the $C_{r,k}$ notation for binomial coefficients,

$$x_1 = C_{r,1}x',$$
 $x_2 = C_{r,2}x'' + C_{r-1,1}x'b_1, \cdots,$
 $x_r = x^{(r)} + x^{(r-1)}b_1 + \cdots + x'b_{r-1}.$

Since (4) has minimum degree, $x_1 = x_2 = \cdots = x_r = 0$. But by (1) $x_r = 0$ is impossible for all x unless $r \ge p^m$. It follows that $r = p^m$ and 1, d, \dots, d^{p^m-1} are (right) independent over C. Thus C and d generate an algebra of order p^m over C and hence p^{2m} over C, and so C and d generate all of A. The field C, the derivation

^{*} J, p. 218.

[†] J, p. 214.

D, and the equation (3) give a complete description of A. Let V(x) for $x \in C$ be the function

$$V_{p^m}(x) + V_{p^{m-1}}(x)\tau_1 + \cdots + V_1(x)\tau_m,$$

where

$$V_{pi}(x) = x^{pi} + (x^{(p-1)})^{pi-1} + (x^{(p^2-1)})^{pi-2} + \cdots + x^{(pi-1)}.$$

I have shown that $V(x) \epsilon F$, and that it has properties analogous to the norm in cyclic fields.* Now suppose $\delta = V(x_0)$. If $d_1 = d - x_0$, then $[x, d_1] = xD$ for all x, and since

$$d_1^{pi} = (d - x_0)^{pi} = d^{pi} - V_{pi}(x_0),$$

we have

$$d_1^{p^m} + d_1^{p^{m-1}}\tau_1 + \cdots + d_1\tau_m = 0,$$

and so $A \cong F_{p^m}$, the algebra of all p^m -rowed square matrices with elements in F. \dagger

Conversely suppose that $A \cong F_{p^m}$. Then there exists in A a field $\widetilde{C} \cong C$ and an element \widetilde{d}_1 such that $[\widetilde{x}, \widetilde{d}_1] = \widetilde{xD}$ where $x \longleftrightarrow \widetilde{c}$ in the isomorphism between C and \widetilde{C} and

$$\tilde{d}_1^{p^m} + \tilde{d}_1^{p^{m-1}} \tau_1 + \cdots + \tilde{d}_1 \tau_m = 0.$$

This isomorphism between C and \tilde{C} may be extended to an automorphism in A.‡ Hence there exists an element d_1 corresponding to \tilde{d}_1 such that $[x, d_1] = xD$ and

$$d_1^{p^m} + d_1^{p^{m-1}}\tau_1 + \cdots + d_1\tau_m = 0.$$

We observe that $d-d_1$ commutes with all the elements of C, and hence $d_1=d-x_0$, $x_0 \in C$. It follows as before that $\delta = V(x_0)$.

THEOREM. A necessary and sufficient condition that A be $\cong F_{n^m}$ is that $\delta = V(x_0), x_0 \in C$.

We now consider the special case where m=1, C=F(c), $c^p=\gamma$. Let D be the derivation such that cD=1. It is easily seen that $D^p=0$ and hence A is generated by c and d such that

^{*} See J, p. 224.

 $[\]dagger$ The symbol \cong denotes isomorphism. For the above equations and result see J, p. 223.

[‡] M. Deuring, Algebren, 1935, p. 42.

[c, d] = 1 and $d^p = \delta$. Thus A has the basis $d^i c^j$ $(i, j = 0, 1, \dots, p-1)$ such that

(5)
$$c^p = \gamma, \quad d^p = \delta, \quad cd - dc = 1.$$

The condition that $A \cong F_p$ is $\delta = V(x_0)$, $x_0 \in F(c)$. Here $V(x) = x^p + x^{(p-1)}$, and so if $x = \xi_0 + c\xi_1 + \cdots + c^{p-1}\xi_{p-1}$, then

(6)
$$V(x) = (\xi_0^p - \xi_{p-1}) + \gamma \xi_1^p + \cdots + \gamma^{p-1} \xi_{p-1}^p.$$

If δ is not a p-th power, (5) is essentially symmetric in c and d. We define the derivation $d \rightarrow dE = -1$ in F(d). Since $E^p = 0$, the condition that $A \cong F_p$ is that

$$\gamma = V(y_0) = y_0 E^{p-1} + y_0^p, \quad y_0 \epsilon F(d).$$

But if

$$y = \eta_0 + d\eta_1 + \cdots + d^{p-1}\eta_{p-1}$$

then

$$V(y) = (\eta_0^p - \eta_{p-1}) + \delta \eta_1^p + \cdots + \delta^{p-1} \eta_{p-1}^p.$$

Thus we have the following reciprocity theorem for arbitrary fields of characteristic p.

THEOREM. If γ and δ are not p-th powers in F, then $(\xi_0^p - \xi_{p-1}) + \gamma \xi_1^p + \cdots + \gamma^{p-1} \xi_{p-1}^p = \delta$ is solvable for $\xi_i \in F$ if and only if $(\eta_0^p - \eta_{p-1}) + \delta \eta_1^p + \cdots + \delta^{p-1} \eta_{p-1}^p = \gamma$ is solvable for $\eta_i \in F$.

University of Chicago