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Hurwitz’ definition of commutative group employs two postu-
lates;* the reader will find it interesting to compare with that
of the present paper.
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1. Introduction. We consider the following problem.

Find 2n numbers 0£60:<0:< + + + <0Opn_1 <02, <2m such that
for every trigonometric polynomial

1) GO = a, + "f{ak cos (n — k)8 + B sin (n — k)}

k=0

of order Zn the equality

0

2 n n
(2) F(6)G(6)do = L{ > G(65i—y) — ZG(@zi)}
=1 =1
holds true, where F(0) is the given function
(3) F@6) = > (A, cos k9 + By sin k), (s < (n — 1)/2),

k=n—s

and L is a given positive number.

Let
Fo(6) = > {4 cos k9 + By sin k9},
(4) k=n—s
2n 6 — 6
Pa(6) = — f F.(0)d6,  G*(6) = const. [] sin T
k=1

Then, integrating (2), we get

* For references, see the first footnote to this paper.
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2w L
f {Pn(ﬂ) iy sgn G*(O)}G’(O)d@ =0,
0
whence it follows that
L c >
(5) 5 sgn G¥(9) = -5 + pa(0) + D (M} cos k6 4+ Ny sin k6),
k=n+1
where ¢ is an arbitrary constant; it is clear that
(6) l¢| = L.

By the theorem of N. Achyeser and M. Kreint{ a necessary
and sufficient condition for the existence of a function deviating
from zero by not more than L/2 and having the first members
of the Fourier expansion

c n .
?+ch'kz’°, cx = ap + by, (k=1,2,:-+,m;2 =€),
k=1

is that the form

(N Xn) i Vr—kXr &

=0 k=0

be non-negative, where the v's are to be found as the coefficients
of the expansion

(8) e('lric)/(2L)-e(“'”L)S= ¥ +’Yl 2 -l- e + 'Ynz” + SN
where
n
S= Z 2,
k=1
and where vo =v+7, Y-r =% (k=1,2, -, n).
It is clear that in our case we have
Bn—-k - iAn——k i .
Cnet = _n.:T_’ Vol = z e(mc)l(2L)5n__k’
(9) (k=0,1,"‘,8),
T
'Yo=2005"2‘z’ YI=7v2= """+ = Yposy = 0.

1 N. Achyeser and M. Krein, Uber Fouriersche Reihen beschrinkter sum-
mierbarer Funktionen und ein neuer Extremumproblem (1 Teil), Transactions
of the Kharkow Mathematical Society, vol. 9 (1934), pp. 18-19.
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Setting
(10) ie(ﬂic)/(ﬂ‘)xn—k = VYn—k, Xk = Vi, (k = 07 1) tet 73)7

we may write our condition thus:

11 —cos— + 4 =0,
(1) T 2L
where we have put
Z cr~kyk37r
(12) 4=, (n—s<|r—k|=n).

2| ol
k=0
It is easy to find that 4 satisfies the inequality
— 8 = A4 = b,

where §, is the greatest root of the equation

5 0 ---0 Cns Cnest1 " * Cn
0 s --- 0 0 Cns  * " Cni
0 0 - - 5 0 0 ¢y
(13) = 0.
Cn—s o ---0 b 0 - 0
Cnestl Cnos- - O 0 5 )
Z. Coy - o 0 0 .. &

Therefore our form (7) will be non-negative if and only if

wc w0 0o
(14) cos — = — Lz —-
2L 2L 2

Such are the necessary conditions for the existence of the quad-
rature formula (2); it is not difficult to see that they are sufh-
cient too.

2. Roots of Trigonometric Polynomials. Thus we are to find
the polynomial G*(0) of order =<# from the condition
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sgn G*(0) = — + RZ Cnr2™ % 4 RZ uiz®, (z = e%),

k=0 k=n+1
Consider the polynomial
(15) PO, a) = R[@*@z ] +]g@) [Pcosa, (s =),

where v+1 is the multiplicity of §, and the polynomial ¢(z) of
degree s —v is to be found from the condition

q(z) . . i
(16) 50;:}(—1'/2—) = Cpnst Cnoeg1z+ -+ +Cz®+ -,
(l zt =1
We have
sgn P(6, )
n—25+10+20+a (m—25+1)8+20—a
= sgn{cos 5 cos 5 },

where ¢ =arg ¢(z), whence we find
q(2)
2*q(1/2)
q(2)
2°q(1/2)
( 'O
e 2*7q(1/2)
q(2)
Z"”q‘(l/Z)
2a 4 sin o 8
RY Gasz™t + R E Az,

T w00 k=0 kmnt1

1 + zn—aeia

sgn P(6,a) = sgn{ e~i«

1 + zn—se-—ia

2a 2
(17) R{ 1——+ — log
T wi

1 + zn-—ae—ia

On putting
(18) 1——=—, O0O=a=sm),
we see that

sgn G*(8) — sgn P(0, a) = D (My cos k8 + N sin kf).

k=n+1
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Hence it follows that almost everywhere in the interval (0, 2m)
sgn G*(0) = sgn P(6, o),

for we have
2T
f [sgn G*(8) — sgn P(8, &) |G*(8)d6 = 0,
0

and the integrand is non-negative. Hence we have the following
theorem.

THEOREM 1. Being given the function

o

F(0) = 3 {4 cos k9 + By, sin 6}, (s < (n—1)/2),
k=n—s
and the positive number L, we can find 2m =<2n real numbers
0=56:<0;< - - - <02, <27 such that the quadrature formula

rF(O)G(G)dO = L{ f G(03i—1) — iG(ezi)}

0 i=1

holds true for every trigonometric polynomial G(0) of order =n;
L must satisfy the inequality L 2wdo/2, where &, is the greatest

root of (13); cnor=(Batr—1Adnr)/(n—k), (=0, 1, -, 5);
m=n—v, where v+1 1is the multiplicity of 6., the numbers
01, Oz, - - -, O3 are the roots of the trigonometric polynomial of
order m

G*(6) = P(9, o)

(19) oo\ 2\ 1/2
= Rlg@)s+] £ | &) |2(1 - (32)) ,

where the polynomial q(z) of degree s—v is to be found from the
expansion (16).

3. Minima of Polynomials. Putting

2

(20) 1 —— =1}, (—1=22Y),
™

we obtain the equality

27 2w 4 1l'>\
(21) f g0 G*OGOB =\ | 6O)d0 + — cos—»
[1] 0

0
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which is valid for every trigonometric polynomial

n—1

G(0) = an + X {arcos (n — k)8 + By sin (n — )8}
k=0
satisfying the condition

(22)  w(G) = X (aktni + Bibni) = 1, (s £ (n—1)/2).
k=0
Hence follows the inequality
2w 27 4 1I'>\
(23) f |G@®)|do—\ | G@B)d9 = — cos —
0 0 50 2
where the equality holds true only for

(23" G(8) = G*(6) = P8, a), O =1— 2a/r).

First put A=0; then we get

2w 4
(24) f |G@®)| do = —-
0 60
Suppose now that G(6) is non-negative; then
2 4 cos (w\/2
coyin = - ST
0 50 1- A
Supposing that A—1, we get finally
27 21!'
(25) G0)do =z — ;
0 60

the equality is valid for the polynomial
(25) G(6) = P(,0) = | q(z) |* + R[g*()z"2+).
We have thus proved the following theorem.
THEOREM 2. For every trigonomeiric polynomial
n—1
GO) = a, + Z{ak cos (m — k)0 + Br sin (n — k)0
k=0

saisfying the condition
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8

@) = X {artni + Bibur} =1, (s (n—1)/2),

k=0
the inequality
27 4
(26) f |G©o)| do = —
0 do

is valid; the polynomial for which this minimum is actually at-
tained is

2(0,2) = Rip@ss]

If the polynomial is bound to be non-negative, then the minimum
will be w/2 times (26) and this minimum will be attained by
the polynomial

P, 0) = | ¢@@ |* + Rg*()zm2r+],
where q(2), 6o, and v have the same meaning as in Theorem 1.
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