SOME MULTIPLICATION THEOREMS FOR THE NÖRLUND MEAN

BY FLORENCE M. MEARS

Absolute summability for the series $\sum_{n=1}^{\infty} u_n$ by the Cesàro mean and by the Riesz mean have been defined by Fekete* and by Obrechkoff,† respectively. In each case, theorems for the multiplication of series summed by these means have been proved.‡ The purpose of this paper is to establish a definition for absolute summability by the Nörlund mean, and to prove three multiplication theorems for this mean. Theorem 1 includes Mertens' theorem for convergent series and its extension for the Cesàro mean. Theorem 2 includes Cesàro's multiplication theorem. Theorem 3 includes the following theorem by M. J. Belinfante for the Cesàro mean.

If $\sum_{n=1}^{\infty} u_n$ is summable C_s to U, and if $\sum_{n=1}^{\infty} v_n$ is summable C_r to V, and bounded C_{r-1} , $(s \ge 0, r \ge 1)$, the product series $\sum_{n=1}^{\infty} w_n$ is summable C_{r+s} to UV.§

For any given series $\sum_{k=1}^{\infty} u_k$, with terms real or complex, form the sequence $\{U_k\}$, where $U_k = \sum_{n=1}^{k} u_n$. Let $\{a_n\}$ be a sequence of positive numbers, and let $A_k = \sum_{n=1}^{k} a_n$. The series $\sum_{k=1}^{\infty} u_k$ is said to be summable to U' by the Nörlund mean A if

$$\lim_{n\to\infty} U_n' = \lim_{n\to\infty} \frac{\sum_{k=1}^n a_{n-k+1} U_k}{A_n}$$

exists and is equal to $U'.\P$ If $\sum_{k=1}^{\infty} u_k'$, where $u_n' = U_n' - U_{n-1}'$, is absolutely convergent, we shall say that $\sum_{k=1}^{\infty} u_k$ is absolutely summable A. We shall assume that $\lim_{n\to\infty} (a_n/A_n) = 0$; then A is a regular method of summation.

^{*} Matematikai és Természettudományi Értesitö, vol. 32 (1914), pp. 389–425.

[†] Comptes Rendus, vol. 185 (1928), pp. 215-217.

[‡] For discussion and references, see Kogbetliantz, Mémorial des Sciences Mathématiques, No. 51.

[§] Koninklijke Akademie te Amsterdam, Verslag, vol. 32 (1923), pp. 177-189.

[¶] Riesz, Proceedings of the London Mathematical Society, (2), vol. 22 (1923), p. 412.

^{||} Riesz, loc. cit.

We shall consider also the series $\sum_{k=1}^{\infty} v_k$, and $\sum_{k=1}^{\infty} w_k$, the Cauchy product of series $\sum_{k=1}^{\infty} u_k$ and $\sum_{k=1}^{\infty} v_k$; we have the corresponding sequences $\{V_k\}$ and $\{W_k\}$.

We shall assume that we have also a regular Nörlund mean, B, defined by $\{b_k\}$, a sequence of positive numbers. We shall form the Nörlund means, C, defined by $\{c_n\} = \{\sum_{k=1}^n a_k b_{n-k+1}\}$, and D, defined by $\{d_n\} = \{\sum_{k=1}^n A_k b_{n-k+1}\}$.

THEOREM 1. If $\sum_{k=1}^{\infty} u_k$ is summable A to U', and in addition, absolutely summable A, and if $\sum_{k=1}^{\infty} v_k$ is summable B to V', then $\sum_{k=1}^{\infty} w_k$ is summable C to U'V'.

PROOF. We shall prove the theorem first with the assumption that V'=0. Let

$$U'_{n} = \frac{1}{A_{n}} \sum_{k=1}^{n} a_{k} U_{n-k+1}, \qquad V'_{n} = \frac{1}{B_{n}} \sum_{k=1}^{n} b_{k} V_{n-k+1},$$

$$W'_{n} = \frac{1}{C_{n}} \sum_{k=1}^{n} c_{k} W_{n-k+1};$$

let $\sum_{k=1}^{\infty} u_k'$, $\sum_{k=1}^{\infty} v_k'$, and $\sum_{k=1}^{\infty} w_k'$ be the corresponding series; then

$$| W_{n'} | \leq \frac{1}{C_{n}} \left\{ | u_{1'} | \left| \sum_{l=1}^{n} c_{l} V_{n-l+1} \right| + \sum_{k=2}^{n} \left[| u_{k'} | \left| \sum_{l=1}^{n-k} V_{l} S + A_{k} b_{1} V_{n-k+1} \right| \right] \right\},$$

where

$$S = A_k b_{n-k-l+2} + \sum_{p=k+1}^{n-l+1} a_p b_{n-l-p+2}.$$

Hence

$$|W_{n}'| \leq \frac{1}{C_{n}} \left\{ \left| u_{1}' \right| \left| \sum_{l=1}^{n} c_{l} V_{n-l+1} \right| + \sum_{k=2}^{n} \left[\left| u_{k}' \right| A_{k} \right| \sum_{l=1}^{n-k+1} b_{n-k-l+2} V_{l} \right] + \sum_{k=2}^{n-1} \left[\left| u_{k}' \right| \left| \sum_{l=1}^{n-k} \sum_{p=k+1}^{n-l+1} a_{p} b_{n-l-p+2} V_{l} \right| \right] \right\}$$

$$= P_{n} \left| u_{1}' \right| + \sum_{k=2}^{n} \left[\left| u_{k}' \right| Q_{nk} \right] + \sum_{k=2}^{n-1} \left[\left| u_{k}' \right| R_{nk} \right].$$

Since C includes B,*

$$\lim_{n\to\infty}P_n=0.$$

For $2 \leq k \leq n$,

$$Q_{nk} < \frac{A_k \left| \sum_{l=1}^{n-k+1} b_{n-k-l+2} V_l \right|}{\sum_{l=k}^{n} A_l b_{n-l+1}}$$

$$< \frac{A_k \left| \sum_{l=1}^{n-k+1} b_{n-k-l+2} V_l \right|}{A_k \sum_{l=1}^{n} b_{n-l+1}} = \left| V'_{n-k+1} \right|.$$

Therefore

$$\sum_{k=2}^{n} Q_{nk} | u_k' | < \sum_{k=2}^{n} | V_{n-k+1}' | | u_k' |$$

$$= \sum_{k=2}^{\nu} | V_{n-k+1}' | | u_k' | + \sum_{k=\nu+1}^{n} | V_{n-k+1}' | | u_k' |,$$

where ν may be chosen so that ν and $n-\nu$ become infinite with n. Since $\lim_{n\to\infty} |V_n'| = 0$, for any ϵ , ν and n may be chosen sufficiently large so that

(2)
$$\sum_{k=2}^{n} [Q_{nk} | u_k' |] < \epsilon.$$

For $2 \le k \le n-1$, we have

$$R_{nk} \leq \frac{\sum_{l=1}^{n-2} a_{n-l+1} B_l | V_l' |}{C_n}$$

$$= \left[\frac{1}{C_n} \sum_{l=1}^{n-2} a_{n-l+1} B_l \right] \left[\sum_{p=1}^{n-2} \frac{a_{n-p+1} B_p | V_p' |}{\sum_{l=1}^{n-2} a_{n-l+1} B_l} \right]$$

$$< \sum_{p=1}^{n-2} \frac{a_{n-p+1} B_p | V_p' |}{\sum_{l=1}^{n-2} a_{n-l+1} B_l} = V_{n-2}^{\prime\prime},$$

^{*} Nörlund, Lunds Universitet, Årsskrift, (2), vol. 16 (1919), No. 3.

where V'_{n-2} is the (n-2)th term of the sequence obtained when $\{ \mid V'_p \mid \}$ is summed by the matrix transformation t_{np} , where

$$t_{np} = \frac{a_{n-p+3}B_p}{\sum_{l=1}^{n} a_{n-l+3}B_l}$$

for $p \le n$, and $t_{np} = 0$ for p > n.

This transformation is regular, since A is regular; it follows that $\lim_{n\to\infty} V_{n-2}''=0$, and that for any ϵ , we may find n sufficiently large so that

$$(3) R_{nk} < \epsilon.$$

From (1), (2), (3), and the fact that $\sum_{k=1}^{\infty} |u_k'|$ converges, it follows that $\lim_{n\to\infty} |W_n'| = 0$. This proves the theorem for V' = 0.

If $V'\neq 0$, we consider the sequence $\{V_n-V'\}$; this sequence is summed by B to 0. Hence the Cauchy product of $\sum_{n=1}^{\infty}u_n$ by $[v_1-V']+\sum_{n=2}^{\infty}v_n$ is summed by C to 0; that is,

$$\lim_{n\to\infty} \left[W_n' - V' \frac{\sum_{k=1}^n c_k U_{n-k+1}}{C_n} \right] = 0.$$

Since C includes A,

$$\lim_{n\to\infty}\frac{\sum_{k=1}^{n}c_{k}U_{n-k+1}}{C_{n}}=U';$$

therefore $\lim_{n\to\infty} W'_n = U'V'$.

THEOREM 2. If $\sum_{k=1}^{\infty} u_k$ is summable A to U', and if $\sum_{k=1}^{\infty} v_k$ is summable B to V', then $\sum_{k=1}^{\infty} w_k$ is summable D to U'V'.

Proof. We have

$$W_{n'} = \frac{1}{D_{n}} \sum_{k=1}^{n} d_{k} W_{n-k+1} = \sum_{k=1}^{n} g_{nk} U_{k}' V_{n-k+1}',$$

where $g_{nk} = A_k B_{n-k+1}/D_n$ for $k \le n$, and $g_{nk} = 0$ for k > n.

Since A and B are regular, this method of summation is regular and $\lim_{n\to\infty} g_{n,n-k+1} = 0$; it follows that*

$$\lim_{n \to \infty} \sum_{k=1}^{n} g_{nk} U'_{k} V'_{n-k+1} = U'V',$$

which completes the proof.

For the proof of Theorem 3 we require the following lemma.

LEMMA. If $\{X_n\}$ and $\{\left[\sum_{k=1}^n B_k y_{n-k+1}\right]/B_n\}$ converge to X and Y, respectively, and if $\{\left[\sum_{k=1}^n b_k y_{n-k+1}\right]/b_n\}$ is bounded, then

$$\lim_{n \to \infty} \left\{ \sum_{k=1}^{n} a_{nk} X_k \frac{\sum_{l=1}^{n-k+1} b_l y_{n-k-l+2}}{b_{n-k+1}} \right\} = XY,$$

provided that (a) $\lim_{n\to\infty}a_{nk}=0$; (b) $\sum_{k=1}^{n}\left|a_{nk}\right|< M$ for all n, where M is a positive constant; (c) T' includes T, where T' and T are triangular matrix transformations defined by $t'_{nk}=a_{n,n-k+1}$ and $t_{nk}=b_k/B_n$.

Proof. Let

$$\frac{\sum_{l=1}^{n-k+1} b_l y_{n-k-l+2}}{b_{n-k+1}} = y'_{n-k+1},$$

and let $a_{nk}y'_{n-k+1} = c_{nk}$. Let $Z_n = \sum_{k=1}^n c_{nk}X_k$. From (a), (b), and (c), it follows that $\lim_{n\to\infty} c_{nk} = 0$, $\sum_{k=1}^n \left| c_{nk} \right| < M'$, where M' is a positive constant, and $\lim_{n\to\infty} \sum_{k=1}^n c_{nk} = Y$. Choose p such that for a given $\epsilon > 0$, $\left| X_k - X \right| < \epsilon/(2M')$ when k > p. For $k \le p$, $\left| X_k - X \right| < L$. Then

$$\left| Z_{n} - X \sum_{k=1}^{n} c_{nk} \right| \leq \sum_{k=1}^{p} \left| c_{nk} \right| \left| X_{k} - X \right| + \sum_{k=p+1}^{n} \left| c_{nk} \right| \left| X_{k} - X \right|$$

$$\leq L \sum_{k=1}^{p} \left| c_{nk} \right| + \frac{\epsilon}{2M'} \left| c_{nk} \right|.$$

Choose N > p, and such that $|c_{nk}| < \epsilon/(2pL)$ for n > N. Then for n > N, $|Z_n - X \sum_{k=1}^n c_{nk}| < \epsilon$, which proves the lemma.

^{*} Dale, American Journal of Mathematics, vol. 47 (1925), p. 82.

Theorem 3. If $\sum_{k=1}^{\infty} u_k$ is summable A to U' and $\sum_{k=1}^{\infty} v_k$ summable B to V', and if

$$\left|\frac{b_n v_1 + \cdots + b_1 v_n}{b_n}\right| < M,$$

then $\sum_{k=1}^{\infty} w_k$ is summable C to U'V'.

PROOF. Consider the triangular matrix definition

$$a_{nk} = \frac{A_k b_{n-k+1}}{A_1 b_n + \dots + A_n b_1}$$

This definition satisfies the three conditions of the lemma, for

(4)
$$\frac{A_k b_{n-k+1}}{\sum_{l=1}^n A_l b_{n-l+1}} < \frac{A_k b_{n-k+1}}{\sum_{l=k}^n A_l b_{n-l+1}} < \frac{b_{n-k+1}}{\sum_{l=k}^n b_{n-l+1}};$$

$$(5) \qquad \sum_{k=1}^{n} \left| a_{nk} \right| = 1;$$

$$(6) A' = C'B',$$

where A', B', and C' are triangular matrix definitions with

$$a'_{nk} = a_{n,n-k+1}, b'_{nk} = \frac{b_k}{B_n}, c'_{nk} = \frac{a_{n-k+1}B_k}{\sum_{l=1}^n A_l b_{n-l+1}}.$$

The definition C' is regular. The theorem follows immediately from this lemma.

THE GEORGE WASHINGTON UNIVERSITY