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QUADRATIC RESIDUES IN FACTORIZATION* 

BY MARSHALL HALL 

1. Introduction. The purpose of this paper is to establish a 
certain theorem which is useful in the factorization of large 
numbers. Quadratic residues have been frequently used in fac­
torization, particularly by M. Kraïtchik in volume II of his 
Recherches sur la Théorie des Nombres. Beeger f has proved several 
propositions on the use of quadratic residues in factorization 
which Kraïtchik tacitly assumed. Quadratic forms are the most 
convenient representations of a number which give material 
information as to the type of its prime factors. The knowledge 
of several quadratic residues of a number is of great aid in find­
ing its factors, but in identifying a prime by its quadratic resi­
dues our proof is negative, in that the same,result might come 
about through an error in the calculation. I t is to eliminate 
much of the calculation involved in identifying a prime, and to 
make the proof of primality positive in character, that the pres­
ent paper has been undertaken. 

2. Definition of Apparent Residues and Non-Residues. Follow­
ing Kraïtchik,% I define (quadratic) apparent residues and ap­
parent non-residues in the following manner. If a, b are odd 
p r imes>1 , if (N/a) = +l and if a' = ( —l/a)a, then a' is said 
to be an apparent residue of N. 

If (N/b) = - l and if b'= ( - 1 / 6 ) 0 , then b' is said to be an 
apparent non-residue of N. According as the Jacobian symbol 
(-1/N) is + 1 or — 1 , — 1 is said to be an apparent residue or 
non-residue of N. Similarly the apparent characters of + 2 and 
— 2 with respect to N are defined. 

We define compound apparent residues and non-residues by 
calling the product of two apparent residues or two apparent 
non-residues an apparent residue, and the product of an ap­
parent residue and an apparent non-residue an apparent non-

* Presented to the Society, March 25, 1932. 
t Nieuw Archief voor Wiskunde, (2), vol. 16, No. 4, pp. 37-42. 
% Recherches sur la Théorie des Nombres, vol. 2, 1929, p. 8. For Kraïtchik's 

"résidu éventuel" I write "apparent residue." 
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residue. No apparent character is given to a number not rela­
tively prime to N, as it is our purpose to find the factors of N, 
which is supposed to be of unknown composition. 

If a number N be prime, then its apparent residues are true 
residues (that is, x2 = a (mod N), a any apparent residue) and 
the product of any two apparent non-residues, is a true residue. 

3. A Preliminary Theorem, We shall now establish various 
preliminary theorems on apparent residues. We show first the 
following result. 

THEOREM 1. A number which is a quadratic residue of every 
prime not dividing it is a perfect square. 

As every odd power of 2 is a non-residue of 3, we may assume 
that such a number contains an odd factor. Let N be a quad­
ratic residue of every prime not dividing it, and N=j2n, where 
n contains no square factors. Then n is a quadratic residue of 
the same primes as N. 

Let n=pip2 - • • pr and let furthermore a be a quadratic 
non-residue of pi (pi odd) and hi be a quadratic residue of pi, 
(i = 2, - - • , r). The congruences x s= 1 (mod 4), x = a (mod pi), 

x = bi (mod pi) s 1 (mod 8) if pi = 2, (i = 2, • • • , r)} 

then always have a solution s, as the moduli are relatively 
prime. There are an infinite number of prime values for the 
general solution x = 4tkn+s. Choose one not dividing j . Then 

hence (N/x) = (n/x) = — 1, contrary to hypothesis, and N must 
be a perfect square. We have actually proved more than the 
theorem, namely, that if N is a quadratic residue of all primes 
except a finite number, then N must be a perfect square. 

4. Compound Characters. We shall now show that the product 
of two prime apparent non-residues of a number N is equivalent 
to a prime apparent residue. 

THEOREM 2. There exists a prime apparent residue of N which 
has the same quadratic character with respect to any factor of N 
as the product of the two given prime apparent non-residues. 
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Given pi and p%, two prime apparent non-residues of N\ each 
is then a non-residue of an odd number of prime factors of N. 
There exists a prime p = kN+pip2 which is such that p=\ 
(mod 4). This is a non-residue of an even number of prime fac­
tors of N, and is consequently an apparent residue of N. For 
if N has s prime factors, N=fif2 • • • ƒ« Cfs not necessarily 
distinct), we may arrange t h e / ' s in the following way. 

Class I. 0 ^ = 0 ^ = +i , (»=1,2,...,X). 

Class II. ( —) =—1, (—) =+1, (* = X+l,X+2, • • • ,/»). 

Class III. (^\=+l,(^\=-l, (i^+1,,,+2,-

Class IV. (— J = (— J = - 1, {i = v+l, v+2, • • • , s). 

Here p is a residue of Classes I and IV (that is, a residue of 
every ƒ in these classes), and a non-residue of Classes II and 
I I I , that is, a non-residue of v — X factors of N. The prime pi is 
a non-residue of Classes II and IV, that is, JJL—\+S — V factors; 
p2 is a non-residue of Classes III and IV, that is, S—JJL factors, 
and v—\^s—fjL+fjL—X+s — v (mod 2). As s—fx and fx — \+s — v 
are odd, then v— X is even and £ is an apparent residue of N. 
Also p==pip2 (mod ƒ*) for any prime factor of N and has the 
same quadratic character as the product for any factor. 

In like manner, it may be shown that the product of two 
prime apparent residues is equivalent to a prime apparent resi­
due, and the product of a prime apparent residue and a prime 
apparent non-residue is equivalent to a prime apparent non-
residue. Consequently, we may treat compound apparent resi­
dues and non-residues as if they were the equivalent primes. In 
this connection, it may be worth while to mention that a prime 
£ = 3 (mod 4) is considered compound. For example, + 3 
= — 1 • — 3 is a compound apparent residue of 35. 

5. Uniqueness of Apparent Residues, 

THEOREM 3. If the apparent residues of a number A are included 
in the apparent residues of a number B> not a square, both their 
apparent residues and their apparent non-residues will coincide. 
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For if b is an apparent residue of B, but not of A, and c is an 
apparent non-residue of both, then be is an apparent residue of 
Ay but not of B. Such a e must exist, for if all the non-residues 
of A were residues of B, then B would be a quadratic residue of 
every prime except a finite set (divisors of A or B) and B would 
be a perfect square, contrary to the assumption. Hence the 
product AB is a square, and consequently, aside from squared 
factors, a number is uniquely determined by its prime apparent 
residues. 

6. A Test for Primality. We are now in a position to prove 
Theorem 4. 

THEOREM 4. If all the apparent residues of a number N are true 
residues, then the number N is either a prime or a power of a prime. 

PROOF. Let R = ru r2, r3, • • • be the set of prime apparent 
residues of the given number N, and S = Si, s2, • • • be the set 
of prime apparent non-residues. The sets R and 5 contain all 
primes except those dividing N. All primes of the set R are by 
definition true residues of N. As by Theorem 2 any product 
SiSj has the same character with respect to every factor of N as 
some r, that is, a residue, if we hold Si fixed and let Sj vary, we 
see that the quadratic character, with respect to any prime fac­
tor of N, of all s's is determined by a single one. 

Then for any prime factor p of N we have the following re­
sult. Every prime in R is a residue of p and either (1) all primes 
of 5 are non-residues of p, or (2) all primes of 5 are residues of p. 

In the first case, a single prime is determined by Theorem 3. 
In the second case, there is no prime at all, as this is the char­
acterization of a square by Theorem 1. Hence N is divisible only 
by a single prime, and the theorem follows. 

7. Applications. In an actual problem of factorization, it is 
impracticable to determine the true quadratic character of every 
number. But if all the apparent residues considered are shown 
to be true residues, the problem is essentially this. 

In the two sets 

A = ah a2, a3, - • • , ar, B = bh b2, b%, • • • , bs, 

A and B contain all primes less than some p ( — 1 considered a 
prime), we know that every ai is a true residue, and that every 
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bibj is a true residue of the number N under consideration. We 
wish to know what restriction this information places upon pos­
sible factors of N. 

8. A Practicable Test for Primality. We define Lp as the least 
number, not a square, which is a quadratic residue of all primes 
^p. In other terms, every number less than Lp which has 

- 1 , 2 , - 3 , • • • , (-l/p)p 

as apparent residues must be a perfect square. (Numbers with 
factors less than p are excluded by the definition of apparent 
residues.) 

THEOREM 5. If all the factors (not necessarily prime f actors) of 
N lie below Lp, and if — 1, 2, • • • , ( — l/p)p may be divided into 
two classes A(aXl a2, • • • , ar), the apparent residues of N, and 
B(fii, b2l - • - ybs), the apparent non-residues of N1 such that every 
ai is a true residue of N, and every bibj is a true residue, then N is 
either a prime or a power of a prime. 

PROOF. For any prime factor q of N we have one of two cases : 
CASE I. Every prime in A is a residue of q and every prime in 

B is a non-residue of q. 
CASE I I . Every prime in A is a residue of q and every prime 

in B is a residue of q. 
Case II is to be rejected as — 1, 2, • • • , ( — l/p)p would be 

apparent residues of q, and q lies below Lp. This would make q 
a square, though also a prime. 

If #i is a prime divisor of N belonging to Case I, then 
(4i/Pi) = (N/Pj) for Pi any of - 1 , 2, • > • , (~l/p)p. In this 
event ([N/qi]/pj) = + 1 and as N/qx<LPi it follows that N/qx 

must be a square. Hence qi is contained in N to an odd power. 
If q% were another prime dividing N, we would also have N/q^ 
a square though divisible by an odd power of q\. Hence N must 
be either a prime or the power of a prime. 

The numbers Lp seem to increase rapidly as p increases. 
Lehmer* has found the values up to Z6i which is 48,473,881. By 
Theorem 1 it follows that Lp tends to infinity with p. 

An asymptotic formula for Lp or some lower bound, such as 
2p /2 , would be quite valuable in applying this last theorem. 

* American Mathematical Monthly, vol. 35, p. 121. See also Kraitchtk, 
Recherches sur la Théorie des Nombres, vol. 1, p. 46. 
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EXAMPLE. N=22, 253, 377. We find the following quadratic 
forms. 

1. N = (2361)2+ (4084)2. 

2. N = (3467)2 + 2(2262)2. 

3. N = (3905)2 + 3(1528)2. 

4. # = (4703)2 + 2 1 2 -3- l l . 

5. TV = (4714)2 + 32.112-29. 

6. iV = (4736)2 - 32.11-13-137. 

N = (4717)2 + 23-3-137. 

7. tf = (4723)2- 23-33-13-19. 

8. # = (4777)2 - 2 4 -3M9-23. 

This gives us the set - 4 ( - l , 2, - 3 , - 1 1 , 13, - 1 9 , - 2 3 , 29) 
and shows them to be true residues. For the set B we find : 

9. SN = (10, 525)2 + 22.1P-5-7-29. 

10. 3N = (8174)2 - 72.5-13-17. 

11. 3iV = (7919)2 + 2-5-7-17-4183. 

N = (4722)2 - 232-83. 

12. 3N = (8206)2 - 5-7-13-31-41. 

13. SN = (10, 533)2 + 22.17-47-101. 

N = (4705)2 + 27-32 .101. 

14. 5N = (10, 547)2 + 22.1M7-37. 

This gives us the set 3 ( 5 , - 7 , 17, - 3 1 , 37, 41, - 4 7 ) , and 
b$3 is a residue. As iVis not divisible by 2 or 3, any factor must 
lie below 9, 257, 329=Z,47î hence, if of Case II type, must be a 
perfect square. Consequently N is a prime or a power of a prime. 
As N = 2 (mod 5) and = 3 (mod 13), it is neither a square nor 
a cube. Having no factor under 50, it cannot be a higher power. 
Hence N is identified as a prime. 
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