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CONCERNING COMPACT CONTINUA IN CERTAIN 
SPACES OF R. L. MOORE 

BY J. H. ROBERTS 

While writing his colloquium book, Foundations of Point Set 
Theory,f R. L. Moore noted that a large body of theorems con­
cerning internal properties of compact continua could be estab­
lished on the basis of a set of axioms (Axioms 1-5, Foundations) 
insufficient to make the space 5 itself a subset of a plane. He sug­
gested that possibly every compact continuum M in S was 
homeomorphic with a compact continuum in the plane. In the 
present paper it is shown that, with possibly one exception, 
this is the case. If S is itself compact then it is homeomorphic 
with a subset of a sphere (possibly the sphere itself). But any 
compact continuum which is a proper subset of S is homeomor­
phic with a compact continuum in the plane. 

THEOREM 1. If S is a space in which Moore's Axioms 1-5 hold 
true and M is a closed and compact subset of S> then M is homeo­
morphic with a subset of a sphere. If furthermore M is a proper 
subset of S, then it is homeomorphic with a subset of a plane. 

Let E and / denote, respectively, a simple domainf and its 
boundary. I t will be shown that if L is any circle in a plane and 
Ti is any topological transformation of J into L, then there 
exists a topological transformation T2 of E- M+J into a subset 
of L plus its interior, such that for each point P of J, T^P) 
= Ti(P). From this result it readily follows that any closed 
and compact subset of S is homeomorphic with a subset of a 
sphere. If M is a closed and compact proper subset of 5, and 
P is a point of S — M, then the closed and compact point set 
M+P is homeomorphic with a subset of a sphere, and thus M 
is homeomorphic with a proper subset of a sphere, and hence 
homeomorphic with a subset of a plane. Henceforth it will be 
assumed that M is a closed and compact subset of E + J, where 
E is a simple domain and J is its boundary. 

t Colloquium Publications of this Society, vol. XIII. Henceforth this book 
will be referred to as Foundations. 

X A simple domain is a domain bounded by a simple closed curve. 
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The compact point set M+J is completely separable (I, 19),f 
Then for every positive integer n there exists a countable sub-
collection of regions of Gn covering M+J (I, 20). Thus there 
exists a countable collection G of regions such that for every n 
the set of regions of the collection G which are regions of Gn 

covers M+J. For each ordered pair (H, K) of regions of the set 
G for which there exists a pair (p, q) of simple domains such thatf 
HD [p-(M+J)+ihe boundary of p], p^q, and p Z , select 
some definite pair of simple domains with these properties. If 
R is any point of M+J, and H is any region of G containing R, 
then there exists a simple domain p containing R such that 
HD [p-(M+J)+the boundary of p] (IV, 11). There exists a 
simple closed curve F lying in p and separating R from some 
point of S — p. Let q denote the component of 5— F which con­
tains R. Then poq (III , 1). There exists a region K of the set G 
containing R and such that qD K. Thus there exists a countable 
infinity of pairs (H, K) as described above, and with every such 
pair there can be associated a pair (p, q) of simple domains 
with properties as described above. Therefore there exists an 
infinite sequence of pairs (pi, qi), (p2, #2), • • * , such that (1) for 
every n, pn and qn are simple domains and pn D qn, and (2) if 
H and K are regions of the set G and there exist simple domains 
u and v such that HD [Ü- (M+J)+the boundary of u], UD V 
and p i , then there exists an n such that HD [pn-(M+J) 
+ t h e boundary of pn] and qn 3 K. 

Let A, B, C, and D denote distinct points of / in the order 
ABCDA. Let Pi , P2, • • • denote an infinite sequence of points 
lying on / - (A +B + C+D) and such that the set P i + P 2 + • • • 
is everywhere dense on / . Two lemmas will be interpolated at 
this point. 

LEMMA 1. If a is a double ruling^ of the interior of the simple 
closed curve ABCDA and E\ and E% are simple domains such that 
E I D E 2 , then there exists a simple closed curve L and a double 

t Unless otherwise stated, all references are to Foundations. (I, 19) denotes 
Theorem 19 of Chapter I. 

J The statement ttA contains B," or UB is a subset of A," is written AD B. 
§ For a definition of this term see Foundations, pp. 404-405. The statement 

"a is a double ruling of the interior of ABCDA " is to be interpreted as implying 
that the arcs of one of the single rulings of a are parallel to AB and CD, and 
those of the other single ruling are parallel to AD and BC. Either complemen­
tary domain of ABCDA may be regarded as its interior. 
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ruling /3 of the interior of ABCDA such that (1) L separates E2 

and S — Ei, (2) every arc of a is also an arc of /3, and (3) L is a 
subset of the sum of the arcs of /3. 

Let F denote a finite point set containing A, B, C, and D, 
every point common to two arcs of a, and every end point of 
an arc of a. Let H denote ABCDA plus all arcs of a. Let Ji 
denote the boundary of Ei (i=l, 2). There exist mutually 
exclusive arcs P iP 2 and S1S2 lying in Ei — E2 except that Ri and 
Si are on /< (i = l, 2) (IV, 19 and II , 1). Then (III , 16) there 
exist domains U and V, arcs R1X1S1 and RiYiSi on J i , and arcs 
R2X2S2 and R2Y2S2 on J2 such that (1) V is bounded by 
RiX1S1+SlS2+R2X2S2+RiR2, V is bounded by .R1F1S1+S1S2 
+R2Y2S2+R1R2, and (2) U+ V+segment R1R2+segment SiS2 

= Ei — E2.There exists a point P(Q) on the segment R1R2 (S1S2) 
which does not belong to F and such that (1) either P(Q) does 
not belong to H, or (2) P(Q) belongs to an arc segment which 
is a subset of both H and R1R2 (S1S2). I t can be shown that 
there exists an arc PZiQ(PZ2Q) which lies except for P and 
Q in U( V), contains no point of F and at most a finite number of 
points of H, and such that if T is a point of H on the segment 
PZXQ {PZ2Q), then PZXQ (PZ2Q) crosses at the point Tf that 
arc of a (or AB, BC, CD, DA) which contains T. Since Z i P - P 
is in U and Z2P — P is in S— U, it follows that the arc Z1PZ2 
crosses the arc R1PR2 a t the point P . Then (IV, 32) P i P # 2 

crosses ZiPZ2 at P . Likewise S1QS2 crosses Z1QZ2 at Q. I t follows 
that the simple closed curve PZ1QZ2 P separates E2 and S — Ei. 
Furthermore, if P (Q) belongs to H then ZiPZ2 (ZiQZ2) crosses 
at P (0) that arc of a (or AB,BC, CD, DA) which contains P (Q). 

Let L denote the simple closed curve PZ1QZ2P. Let J' denote 
the boundary of any of the subdivisions into which a divides 
the interior of ABCDA. Let A', B\ C', and D' denote the points 
of P o n J' so that on J' the order A'B'CD'A' obtains. Then the 
simple closed curve L satisfies, with respect to A'B'CD'A', the 
requirements J of Theorem 8 of Chapter VI of Foundations, and 

t See Foundations, p. 201. 
% Furthermore, if X is a point common to L and A'B'C'D'A', then there 

exist arcs UXV and ZXY, being subsets of L and A'B'C'D'A', respectively, 
which cross dit the point X. Without this additional hypothesis, Theorem 8 of 
Chapter VI fails to hold true. Though stated in Chapter VI, the modified the­
orem holds true under Axioms 1-5. 
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there exists a double ruling yj> of A'B'C'D'A' such that every 
point of L within A'B'CD'A' lies on some arc of yj>. Thus there 
exists a double ruling of every subdivision into which a divides 
the interior of ABCDA. The arcs of these rulings can be ex­
tended so that there results a double ruling ]8 of ABCDA such 
that (1) every arc of a is also an arc of j8, and (2) every arc of 
yj' (for every J') is a subset of an arc of j8. Then L is a subset of 
the sum of the arcs of j3. This completes the proof of Lemma 1. 

LEMMA 2. If P is a point of a simple closed curve ABCDA 
distinct from A, B, C, and D, and a is a double ruling of the in­
terior of ABCDA f then there exists a double ruling /3 of the interior 
of ABCDA such that (1) every arc of a is an arc of /?, and (2) 
the point P is an end point of an arc of &. 

Returning to the proof of Theorem 1 we can show, using 
Lemmas 1 and 2 repeatedly, that there exists an infinite se­
quence OL\, ct2f ' ' ' of double rulings of the interior of ABCDA 
(consider E as the interior of ABCDA) such that, for every i, 
( i = 1, 2, • • • ), (1) every arc of a% is also an arc of ai+\, (2) there 
exists a simple closed curve Li separating <ju and S — pi and 
being a subset of the sum of the arcs of ai and (3) the point Pi 
is an end point of some arc of a»\ 

There exists a homeomorphic correspondence between AD 
(AB) and the set of real numbers x (O^x^ 1) such that A cor­
responds to 0 and D (B) corresponds to 1. If P is any point on 
AD (AB) let xp (yp) denote the number corresponding to P . If 
P is any point of M+J and UV is an arc not containing P and 
belonging, for some i, to the double ruling a t , then if UV is 
parallel to AB (AD) the point P is said to lie to the right of UV 
(above U V) if and only if it is true that of the mutually exclu­
sive domains into which UV divides E, the one having on its 
boundary the point D (the point B) either contains P or has P 
on its boundary. Now let P denote any point of M+J. From 
the Dedekind-cut proposition (I, 64), it follows that there 
exists a unique point Q on AD such that P lies to the right of 
every arc of at (i = l, 2, • • • ), which has an end point on the 
segment A Q, but does not lie to the right of any arc of cet which 
has an end point on the segment QD. Define xP to be the num­
ber XQ. Similarly there exists a unique point R on AB such that 
P lies above every arc of ai (i = 1, 2, • • • ), which has an end 
point on the segment AR, but does not lie above any arc of ai 
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which has an end point on the segment RB. Define yp to be the 
number yR. Thus for every point P of M+J there has been de­
fined a pair of numbers (xp, yP). Let T denote the transforma­
tion of M-\-J which throws the point P into the point with co­
ordinates (xp, yp) in a plane. Then T{J) is a square and T(M) 
is a subset of a square plus its interior. I t will now be shown 
that T is a topological transformation. 

If it is shown that J1 is a one-to-one transformation, then it 
will follow that if the point P of M+J is a limit point of the 
subset N of M+J, then TCP) is a limit point of T(N). To show 
that T is a topological transformation it will, then, be sufficient 
to show that if P is a point of M+J and N is a closed subset of 
M+J not containing P , then T(P) is not a limit point of T(N) 
and does not belong to T(N). Let P denote a point of M+J 
and N any closed subset of M+J not containing P . Suppose 
W is a domain containing P . There exists a region iT of the set 
G containing P , lying in W, and containing no point of N. 
There exists a simple domain u containing P such that 
HD [Ü- (M+J)+the boundary of u]. There exists a simple do­
main v containing P and such that « D Û . There exists a region 
K of the set G containing P and such that VD~K. Then for some 
integer (say ii) the simple domains pi1 and g t l have the proper­
ties stated above for u and v, respectively. Furthermore the 
simple closed curve Li separates g^ and S — Pi1 (and therefore 
K and S — H) and is a subset of the sum of the arcs of aiv By a 
repetition of this argument it can be shown that there exists an 
integer i2 (4 >ii), such that Z,;2 separates P from Lix. Thus there 
exist two mutually exclusive simple closed curves, Lix and L;2, 
each separating P from iV, and each being a subset of the sum 
of the arcs of CÜ,-,. There exists a positive number e such that if 
U\V\ and C/2V2 are any arcs of au2 parallel to AB {AD) with Z7i 
and U2 on 4̂Z> (-45), then \xui — xUi\>e (\yuJi—yui\>e). 
Clearly, then, if Q is any point of N, either \xp — XQ\>e or 
\yp--yQ I >e- Then the distance from T(P) to P(£?) is greater 

than e. Hence T is a topological transformation of M+J into a 
subset of a square plus its interior. 

Let K denote the square which is the image of / , that is, 
K = T(J). Let L denote any circle in the plane and suppose Pi 
is a given topological transformation of J" into L. Let T' denote 
the transformation of K into L such that, if P is a point of J , 

file:///yp--yQ
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so that T(P) is a point of K and 7\(P) is a point of L, then 
T'[T(P)] = Ti(P). Clearly T is a topological transformation. 
Then it can f be extended so that there results a topological 
transformation T" of K plus its interior into L plus its interior 
such that on K, T" reduces to T'. Now let P be any point of 
M+J. Let T2(P) denote the point T"[T(P)]. Then T2 is a 
topological transformation of M+J into a subset of the circle 
L plus its interior, and for each point P on / , T%(P) = Ti(P). 
This completes the proof of Theorem 1. 

THEOREM 2. If M is a compact continuum which is a proper 
subset of a space S in which Axioms 1-5 hold true, then there exists 
in a plane a compact continuum M* homeomorphic with M. 

Theorem 2, which is an immediate consequence of Theorem 1, 
answers explicitly Moore's question mentioned in the intro­
duction. 

AXIOM 5'. If P is a point of a domain D, then there exists a 
simple domain E containing P and lying in D. 

The set of Axioms 1, 3, 4, 5' is clearly as strong as the set 1-5, 
as Axiom 2 is a consequence of Axioms 5' and 4, and Axiom 5 is 
a consequence of Axiom 5'. The new set of axioms is, in fact, 
stronger, as there exist spaces satisfying Axioms 1-5 in which 
Axiom 5' does not hold true. (See the Preface, Foundations^) 

THEOREM 3. If S is a space in which Axioms 1, 3, 4, 5' hold 
true and M is a completely separable subset of S, then M is homeo­
morphic with a subset of a sphere. If furthermore M is a proper 
subset of S, then it is homeomorphic with a subset of a plane. 

The proof of Theorem 3 follows closely the proof of Theorem 
1. In proving Theorem 1 the fact that Afwas closed and compact, 
rather than merely completely separable, was used only to show 
that if P is a point of M lying in a domain D then there exists a 
simple domain u containing P and such that DD (ü- M+the 
boundary of u). But Axiom 5' gives directly a stronger result 
than this. 

f Schoenflies, Beitrdge zur Theorie der Punktmengen, Mathematische An­
nalen, vol. 62 (1906), pp. 286-328. See also J. R. Kline, A new proof of a the­
orem due to Schoenflies, Proceedings of the National Academy of Sciences, 
vol. 6 (1920), pp. 529-531. 
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There exists a metric space 5 in which Axioms 1, 3, 4, and 5' 
hold true, but such that S is not completely separable. Hence it 
does not follow that a space S in which Axioms 1, 3, 4, and 5' 
hold true is a subset of a plane, even if it is assumed that 5 is 
metric. 

DUKE UNIVERSITY 

ANALOGS OF T H E S T E I N E R SURFACE 
AND T H E I R DOUBLE CURVES* 

BY A. R. WILLIAMS 

The equations Xi:x2:x3:x^ = xn:yn:zn:wn
y where x, y1 z, w are 

linear functions of three homogeneous parameters, represent a 
rational surface of order n2. For n = 2 we have the well known 
Steiner surface. The particular subject of this paper is the double 
curve of such a surface and its representation on the plane. A 
few general properties must first be mentioned. 

We take in the plane the reference system x = 0, 3> = 0, 2 = 0, 
and x+y+z= — w = 0. The diagonals of the quadrilateral are 
x+y^z — z — w = 0, etc. The vertices of the diagonal triangle are 
( 1 : 1 : — 1 : —1), (1 : — 1 : 1 : —1), (1 : — 1 : —1:1), the fourth co­
ordinate being w. Corresponding to the diagonals, the surface 
has 3 multiple right lines of order n, each meeting two opposite 
edges of the tetrahedron in points which correspond to a pair 
of opposite vertices of the quadrilateral. If n is even, the multiple 
lines are concurrent at (1 :1:1:1) , which is a point of order 
3(n — 1) for the surface, corresponding to the vertices of the 
diagonal triangle and to certain pairs of imaginary points when 
n>2. If n is odd, the multiple lines are not concurrent, but are 
coplanar, meeting two by two at 3 points corresponding to the 
vertices of the diagonal triangle. The intersection of two mul­
tiple lines is then a point of order 2n — \ for the surface. The 
class of the surface is always 3(n — l)2. The only pinch points 
are the 6 in which the multiple lines meet the edges of the tetra­
hedron. Each coordinate plane contains a single curve of order 
n, and is tangent to the surface along that curve, the order of 
contact being n — 1. When n is even the section by a plane 
through a multiple line meets it in one variable real point, and 

* Presented to the Society, March 18, 1933. 


