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MATRICES WITH E L E M E N T S IN A PRINCIPAL 
IDEAL RING* 

BY C. C. MACDUFFEE 

1. Rings, To at tempt to distinguish between algebra and 
number theory is probably futile, but, speaking approximately, 
it may be said that algebra (in the narrowest sense of the word) 
is the study of fields, while number theory is the study of rings. 
The mathematical system which seems most satisfactory as an 
abstraction of the system of rational integers is the principal 
ideal ring. By this I mean that the basic theorems of number 
theory, such as unique factorization into primes, hold for a 
principal ideal ring, while the concept of principal ideal ring is 
sufficiently general to include many other instances besides the 
rational integers. 

A ring] is a mathematical system composed of more than one 
element, an equals relation, and two operations, + and X, 
subject to the following laws. The elements form an abelian 
group relative to the operation + , the identity element being 
denoted by 0. The set of elements is closed under the operation 
X, which is associative. Finally, the operation X is distributive 
with respect to the operation + , 

If a7^0 and b^O are elements of a ring 9Î such that ab = 0f 

then a and b are called divisors of zero, A commutative ring 
without divisors of zero is called a domain of integrity. 

Let a, b, c be elements of a domain of integrity $). If ab = c> 
then a \c (a divides c), b\c, and a and b are called divisors of c. 
If a \b and a \c, then a is called a common divisor of b and c. If, 
furthermore, every common divisor of b and c divides a, then a 
is a greatest common divisor (g. c. d.) of b and c. 

If there exists a number 1 of © such that l - a = a - l = a for 
every a, this number 1 is called a principal unit.% A domain of 
integrity with a principal unit in which every pair of elements 

* Symposium lecture delivered at the meeting of the Society in Chicago, 
April 15, 1933. 

f In the interest of uniformity I have used the definitions of van der 
Waerden, Moderne Algebra, Springer, 1930-31. 

% Einselement, van der Waerden. 
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not both 0 have a greatest common divisor representable lin­
early in terms of the elements is called a principal ideal ring. 

In a principal ideal ring $ , an element which divides 1 is 
called a unit. The relation a — ub, where u is a unit is reciprocal, 
and the two numbers a and b so related are called associates. 
A set of numbers of ty no two of which are associated but such 
that every number of $ is associated with one of them will be 
called a complete set of non-associates for $ . Thus the positive 
integers and 0 constitute a complete set of non-associates in the 
ring of rational integers. 

A field* is an instance of a principal ideal ring, but from the 
standpoint of number theory it is a trivial instance, since every 
element except 0 is a unit. The polynomial domain of a field, 
that is, the set of all polynomials in one indeterminate with 
coefficients in the field, is a non-trivial instance. The units of 
this polynomial domain are the elements of the field (0 ex­
cluded), and the primes are the irreducible polynomials. Maxi­
mal domains of algebraic fields of class number unity are also 
non-trivial instances. 

According to the definition of principal ideal ring, every two 
numbers a and b of $ have a g. c. d. d expressible in the form 

d = pa + qb, 

where p and q are in *$. The determination of p and q is for most 
rings a practical problem of considerable difficulty. In the ring 
of rational integers it is handled by means of the well known 
Euclid algorithm. For polynomial domains and a very few alge­
braic rings a Euclid algorithm has been developed. 

The term euclidean ring has been applied to a principal ideal 
ring with a Euclid algorithm, and it has been considered that 
the separation of rings into euclidean and non-euclidean rings 
was a fundamental separation. Recent developments have 
tended to question this, and to indicate that the separation into 
rings of class number unity (principal ideal rings) and those of 
higher class number is of much more importance. I t is true that 
the well known methods of proof of the fundamental theorems of 
number theory carry over only to euclidean rings, but the 
theorems themselves are generally true for principal ideal rings.f 

* Kommutativ K'orper, van der Waerden. 
t Van der Waerden, loc. cit., vol. I, §17. 
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Just what algebraic rings of class number unity have eu-
clidean algorithms is not known. Only five quadratic fields of 
negative discriminant have an algorithm based on decreasing 
norms, while ten of positive discriminant are known to have 
such. Perron* has recently suggested that all quadratic rings of 
positive discriminant and class number unity may have such an 
algorithm, but could not prove this. Then, too, the existence of 
an algorithm based on some other stathmf than the norm is a 
possibility. Very little is known of algebraic rings of degree 
higher than the second. 

I t is thus evident that the whole matter of euclidean rings is 
in disorder. For practical purposes, a euclidean ring is one for 
which some person has discovered a Euclid algorithm. 

One of the purposes of this paper is to add support to the 
point of view that the principal ideal ring is the important con­
cept rather than the euclidean ring by giving a unified account 
of an extension to principal ideal rings of the more important 
results in the theory of matrices with rational integral elements. 

2. Matric Rings. Consider a mathematical system SDÎ whose 
elements are the arrays 

[ 011 

^21 

1 dnl 

012 * 

022 * 

0n2 * 

' 01n 1 

* 02w 

* dnn 1 

where the an belong to a ring 9Î. Two arrays A = (ars) and 
B = (brs) are called equal if ar8 — ors for every r and s. 

The operation of addition ( + ) is defined by 

A + B = (ara + brs). 

Evidently the arrays form an abelian group with respect to ad­
dition, since the same is true of the elements of the ring 9Î. The 
identity for addition, composed entirely of O's, will be denoted 
b y O . 

* Mathematische Annalen, vol. 107 (1932), pp. 489-495. 
t See J. H. M. Wedderburn, Journal für Mathematik, vol. 167 (1931), pp. 

129-141. 
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The operation of multiplication is defined by 

AB = l J^arib 
\ i 

The product is unique, and OA =A0 = 0 for every A. 
I t is easily seen that multiplication in SD? is associative, and 

distributive with respect to addition, since the same is true in 9î. 
Thus the system SDÎ is a ring, which we may call the total 

matric ring of order n over dl. Each of the arrays composing SDÎ 
will be called a matrix. 

If the ring 9Î' has a principal unit 1, the derived matric ring 
$1' has the principal unit 1 = (5rs), where 8rs is 1 or 0 according 
as r = s or r^s. We shall call I the identity matrix of SO?'. 

Further specialization of 9t' to a commutative ring, or to a 
ring without divisors of zero, does not carry with it the cor­
responding specialization of 2JJ'. 

If 3Î' is a ring with a principal unit, the matrices. S(k) = (kôrs) 
constitute a subring of SD?' which is isomorphic with the num­
bers k of 9t'. The operation of scalar multiplication by which a 
matrix A of 9JÎ' is multiplied by a number k of 9Î' consists in 
replacing k by S(k) and forming the matric product S(k)A. 

The matrix AT = (asr), obtained from A=(ars) by changing 
rows to columns, is called the transpose of A. A matrix 5 such 
that *ST = 5 is called symmetric. A matrix Q such that Qr = — Q 
is called skew. 

If A is a matrix of 5DÎ, then 2A can be represented as a sum 
of the symmetric matrix A+Ar and the skew matrix A—AT. 
If 2 is not a divisor of zero in the ring 9Î, this representation is 
unique. For if 

2A = S + Q, 

where 5 is symmetric and Q is skew, then 

2AT = S - Q, 

so that 

2[A +A^ - S] = 0, 2[A -At - Q] = 0. 

3. Unimodular Matrices. Let us now consider the total matric 
ring 9Jt of matrices with elements in a principal ideal ring $ . 

is I • 
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A matrix U of SDÎ is called unimodular, or a unit matrix, if there 
exists a matrix U' such that UU' =*I. 

Denote the determinant of U by d(U). Since UU' = 1 implies 
d(U)d(U') = l, d(U) is a unit of $ . Conversely if U is in SD? and 
d(Z7) is a unit of $ , then C/1 (the inverse of U) is in 2)î, and 
serves as the U' of the definition. Hence also U'U = I, and U' 
is a unit. 

Similarly a matrix 4̂ of SDÎ is a divisor of zero if and only if 
d(A)=0. 

THEOREM 1. Let #i, a2, • • • , an, all numbers of a principal 
ideal ring $ , have the greatest common divisor dn. There exists a 
matrix of determinant dn having au a2, • * • , an as its first row. 

This theorem was first given for rational integers, w = 3, by 
G. Eisenstein,* and for any n by C. Hermite.f The following 
proof (for the case of rational integers) was given by A. Bloch.J 

The theorem is evidently true for n = 2, for if pai+qa2 — d2y 

then 

- q p 
= d2 

Suppose that it holds for n — 1, and let Z)w-i be a matrix which 
has #i, a2f • • - , an-i as its first row, and whose determinant is 
the g. c. d. dn-\ of ai, a2} * • • , an-i. Determine p and q so that 
pdn-i — qan = dn. Let 

Dn = 
Dn 

a±q a2q an-iq 

an 

0 

0 

P 
dn-l dn-\ dn-l 

Then, expanding according to the elements of the last column, 

d{Dn) = ( - ïy-^n— — ( - l ) w 4 - l + pdn-1 
dn-l 

= pdn-i — qan = dn. 

* Journal für Mathematik, vol. 28 (1884), pp. 289-374. 
t Journal de Mathématiques, (1), vol. 14 (1849), pp. 21-30. 
t Bulletin de la Société Mathématique, vol. 50 (1922), pp. 100-110. 
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Other proofs have been given by K. Weihrauch,* Bianchi,f 
and H. Hancock. J 

4. Types of Equality in Matric Theory. At the very basis of 
every mathematical system lies the notion of equality. The ab­
stract formulation of this notion may be embodied in the fol­
lowing four postulates.! The relation A = B is a relation of equal­
ity if it is 

(1.) Determinative (Either A =B or A 5eB), 
(2.) Reflexive (A=A), 
(3.) Symmetric (A=B implies B =A)y 

(4.) Transitive (If A = £ and B = C, then A = C). 
Such a definition of equality constitutes a separation of the ele­
ments into classes. 

The richness of the matric theory is due in large part to the 
number of non-isomorphic types of equality which can be de­
fined, each having associated with it an interesting and fairly 
extensive theory. A few examples follow. 

(1.) Let 9Î' be a ring with a principal unit. If there exists a 
unimodular matrix U such that A = UB, then A is a left asso­
ciate of B, written AhB. 

(2.) If A is a right associate of B, then A*B. 
(3.) If there exist two unimodular matrices U and F such that 

A = UB V, then A=B. (A is equivalent to B.) 
(4.) If there exists a unimodular matrix Z7 such that A = 

UTBU, then ^4£J5. (4 is congruent with £.) 
(5.) If there exists a unimodular matrix £/ such that A = 

t/lBf/, then AiB. (A is similar to 5.) 
(6.) If there exists an orthogonal matrix U (C/I=C/T) such 

that A = UTBUf then ^42^. (<4 is orthogonally congruent with 
-B.) 

All of these relationships obey the four postulates stated 
above, and are therefore in an abstract sense relations of equal­
ity. These examples by no means exhaust the possibilities. 

* Zeitschrift für Mathematik und Physik, vol. 21 (1876), pp. 134-137. 
t Lezioni sulla Teoria dei Numeri Algebrici, pp. 1-7. 
% American Mathematical Monthly, vol. 31 (1924), pp. 161-162. 
§ See O. Ore, this Bulletin, vol. 37 (1931), p. 538. Van der Waerden (vol. I, 

p. 14) would call this relation equivalence, and say that the class Ca containing 
a is equal to the class Cb containing b if and only if a is equivalent to b. I t 
seems to the writer that Ore has carried this idea to its logical conclusion. 
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An interesting example of slightly more complicated nature 
was given by A. Loewy.* If the elements of A, B, and P are 
functions of x, and P D is the matrix obtained from P by re­
placing each element by its derivative, and if 

A = - PDPI + PBP1, 

then A is similar to B in the sense of Loewy. 

5. Associated Matrices. The following elementary operations 
upon the rows of a matrix can be accomplished by multiplying 
the given matrix on the left by an elementary matrix, namely the 
unimodular matrix obtained by performing the desired ele­
mentary operation upon the identity matrix I. 

(1.) The interchange of two rows. 
(2.) The multiplication of the elements of a row by a unit u 

of 3$. 
(3.) The addition to the elements of a row of k times the 

corresponding elements of another row, k being in ty. 
Every elementary matrix is unimodular, and its inverse is an 

elementary matrix of the same type. The theory of elementary 
matrices is due to L. Kronecker.f 

If $ has a euclidean algorithm, every unimodular matrix is 
a product of elementary matrices. This appears to be not so in 
other rings.J 

If UA = B, then for every k 

Z^Uijaju = but, 

so that every g. c. d. of the elements of the &th column of A 
is a common divisor of the elements of the &th column of B. 
If U is unimodular, the relation of A to B is reciprocal. Hence 
the g. c. d. of the elements of every column is invariant under 
transformations of this type. 

These n invariants do not form a complete system, however, 
as the next theorem shows. 

THEOREM 2. Every matrix A with elements in ty is the left as­
sociate of a matrix having 0's above the main diagonal, each di-

* Mathematische Annalen, vol. 78 (1918), pp. 1-51. 
t Berliner Akademie, Monatsberichte, 1866, pp. 597-612. 
t See van der Waerden, loc. cit., vol. I I , p. 122. 
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agonal element lying in a prescribed system of non-associates, and 
each element below the main diagonal lying in a prescribed residue 
system modulo the diagonal element above it. If, furthermore, any 
diagonal element is 0, all the elements of its row can be made 0. 
This form is unique. 

This theorem was stated for a non-singular matrix with ra­
tional integral elements by C. Hermite.* 

To avoid being tiresome, I shall prove this merely for a special 
case. I t is fairly evident that the procedure is general. Let 

an 

# 2 1 

# 3 1 

# 1 2 

# 2 2 

#32 

# 1 3 

# 2 3 

# 3 3 

Unless every element of the last column is zero, they have a 
g. c. d. 

#*3 = &1#13 + &2#23 + #3#33 

lying in any prescribed system of non-associates. By Theorem 1 
there is a unimodular matrix U having bi, 62, bz as its last row. 
Then UA has dz in the (3, 3)-position, and every other element 
of the last column is a linear combination of au, a2z, #33, and hence 
a multiple of d3. By subtracting a proper multiple of the last row 
from each of the other rows, a matrix is obtained whose last 
column consists entirely of 0's above the main diagonal. Simi­
larly, if we work now only with the second order minor in the 
upper left corner, #i2 can be made 0. 

In case every element of the last column of A is 0, the pro­
cedure must be slightly modified. Let 

#*2 = #1#12 + #2#22 + #3#32 

be the desired g. c. d. of the elements of the second column. Let 
U be unimodular with bi, ô2, bz as its second row. Then UA still 
has all zeros in the third column, while d2 is in the (2, 2)-posi­
tion, and d2 divides every other element of the second column. 
Thus A is the left associate of 

* Journal für Mathematik, vol. 41 (1851), pp. 191-216. 
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0 n 

021 

^31 

0 

di 

0 

0 

0 

0 

Let di = biav +&3031 be a g. c. d. of an and 03i. Take U unimodu-
lar so that 

U = 

Then VA has dx in the (1, 1)-position, and d\ is a divisor of the 
other elements of the first column, while the last two columns 
are intact. Thus A is the left associate of 

by 

0 

«31 

0 

1 

0 

h 
0 

«33 

1 di 0 0 1 

«2i d% 0 

1 0 0 0 
• 

Let us prove the uniqueness of this form for the example 

A = 

| an 0 0 1 

0 0 0 

«si 032 033 1 

, 011033 5* 0 . 

Suppose 

lu 

hi 

hi 

In 

hi 

^32 

^13 

^23 

^33 

0ii 0 

o o 
o 
0 

031 032 033 

in 

£21 

&31 

0 

£22 

£32 

where &« = 0 implies bki = 0, k = l, 2, 3 and (lr8) is unimodular. 
Suppose that bu belongs to the same system of non-associates 
as da* and that if bu = au, then bki belongs to the same residue 
system modulo an that au does. 

Since /i3033 = &i3 = O and Z23033 = b2Z = 0, and 033^0, then 
/i3 = J23 = 0. Since (lr8) is unimodular, /88 is a unit. Since 033 and 
hz 033 = 3̂3 belong to the same system of non-associates, 3̂3= 1 
and 033 = 033. 

Now &22 = 0, since Z23 = 0. Hence &21 = 0 also, from the definition 
of canonical form. Hence /2i0n = &2i = O, /2i = 0. Then In and I22 
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are units of $ . But an and /nan = 6n are in the same system of 
non-associates, so /n = l and bn = an. Since 

hldll + #31 = &31, 

and 3̂1 and &31 lie in the same residue system modulo #ii = &n, 
it follows that /3i = 0. Hence 

1 1 
0 

1 0 

hi 

u 

hi 

0 1 

0 

1 1 
This matrix leaves A unaltered when used as a left factor. 

6. Greatest Common Divisors. If A, C, and D are matrices with 
elements in a principal ideal ring such that A = CD, then D is 
called a right divisor of A, and A is a left multiple oî D. A greatest 
common right divisor (g. c. r. d.) D of two matrices A and B is a 
common right divisor which is a left multiple of every common 
right divisor of A and B. A /eas/ common left multiple (1. c. 1. m.) 
of two matrices A and B is a common left multiple which is a 
right divisor of every common left multiple of A and B. 

THEOREM 3. Every pair of matrices A and B with elements in 
a principal ideal ring have a g. c. r. d. D expressible in the form 

D = PA +QB. 

This theorem was first given for matrices A and B not both 
singular and with rational integral elements by du Pasquier* by 
means of a generalized Euclid algorithm. Computation by this 
method is laborious. The presentation here given is not only 
simple and independent of the Euclid algorithm (and hence ex­
tensible to principal ideal rings) but computation by means of 
it is easy and rapid. I t is due in essence to E. Cahen,f and in the 
form here presented (for rational integers) to A. Chatelet.J 

By Theorem 2 there exists a unimodular matrix U such that 

D Oil 

O Oil 

* Naturforschende Gesellschaft zu Zurich, vol. 51 (1906), pp. 55-129. 
t Théorie des Nombres, vol. I, 1914. 
t Groupes Abéliens Finis, 1924, 

u 
A 

B °\ o\ 
Un 

vn 

Un 1 

Un 

A 

1 B 
0 

0 
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Thus UiiA + Ui2B = D, so that every common right divisor of 
A and B is a right divisor of D. Since U is unimodular, U1 = V 
has elements in $ , and 

A Oil 

B Oil' 

Thus A = F n P , 5 = V21P, and -D is a common right divisor of 
A and B. 

If in the 2nXn array ( ^ j is of rank n, the matrices 4̂ and 
B have a non-singular g. c. r. d. D. In this case every g. c. r. d. 
of A and B is a left associate of D. For if D = PDi and P i = ()£>, 
D=PQD. If d(D)^0} then I = PÇ, whence P and Ç are uni­
modular. 

The above algorithm also furnishes a least common left multi­
ple of A and B if both are non-singular. Evidently 

U21A + U22B = 0 . 

Let us define M by the formula 

i f = U21A = - £/22£. 

Tha t is, Af is a common left multiple of A and B. If ikfi is an­
other c. 1. m., their g. c. r. d. M2 = PM+QMi is a c. 1. m. such 
that M = HM2. Suppose M2 = KA =LB. Then 

U21A = HKA, - £/22£ = # £ £ , 

and since A and J5 are non-singular, 

Un = # Z , Z722 = - # ! , . 

But 

/ = ^2iF1 2 + U22V22 = H[HV12 - LV22], 

so H is unimodular, and M is a right divisor of Mi. 

7. Equivalence. Two matrices A and B with elements in a 
principal ideal ring ty are equivalent if there exist two unimodu­
lar matrices U and V with elements in $ such that A = ZZS V. 

With some modification of proofs, the theory of invariant fac­
tors and elementary divisors in an ordinary polynomial ring 
goes over intact to a principal ideal ring. First of all, we may 
note that each greatest common divisor di of the i-rowed minor 

V\ 
D 

0 °\ o\ 
F u 

Vn 

Va 

F22 
1 D 

0 

0 

0 
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determinants of A is associated with every greatest common 
divisor d[ of the i-rowed minor determinants of B. This follows 
from the fact that if A = UB V, every i-rowed minor of A can be 
written as a linear combination of the i-rowed minors of B, and 
if U and V are unimodular, the relation is reciprocal. 

THEOREM 4. Every matrix A of rank p with elements in $ is 
equivalent to a diagonal matrix hi, fe, • • • , hp, 0, • • • , 0 where 
hi^O and A* |A»-+i-

This theorem was given for rational integers by H. J. S. 
Smith.* 

Since the Euclid algorithm is no longer available, Theorem 1 
must be used as a substitute. After shifting rows and columns 
so that the minor of order p in the upper left corner is not 0, the 
element in the (1, Imposition can be made F^O and a g. c. d. of 
the elements of the first column, as was shown in the proof of 
Theorem 2. As in the usual reduction, the element in the (1, Im­
position either divides every remaining element of the first row, 
or it can be replaced by a proper divisor of itself—that is, re­
placed by a number having fewer prime factors. Since a number 
of ty neither 0 nor a unit has but a finite number of prime factors, 
this process can be repeated until flu divides every other ele­
ment of the first row and first column.t Now, as usual, A can 
be reduced by a repetition of this process to a diagonal form 
[gi, #2, • • • , gP, 0, • • • , 0] . 

By adding column 2, column 3, • • • , column p to column 1, 
the matrix is made to assume the form 

II gi 0 0 • • • 0 [I 

#2 #2 0 • • • 0 

#3 0 gz • • • 0 * 

As in the proof of Theorem 2r there is a unimodular matrix U 
which, used as a left factor, replaces gi by the g. c. d. hi of 
gu g2, ' ' ' , gP> Every element of the new matrix VA is a homo-

* Philosophical Transactions of the Royal Society of London, vol. 151 
(1861-62), p. 314. 

f Van der Waerden, loc. cit., vol. II, p. 124. 
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geneous linear combination of gi, g2, • • • , gP, so every element 
is divisible by Ai. Reduce every element of the first row and 
column except the element Ai in the (1, Imposition to 0. Con­
tinue the entire process with the (« —1) -rowed minor in the 
lower right corner to obtain an A2 in the (2, 2)-position which 
divides A3, • • • , Ap. Finally we obtain the normal form. 

Let H= [Ai, • • • , Ap, 0, • • • , 0] be the normal form of A. 
The g. c. d. di of the i-rowed minors of A is associated with the 
g. c. d. d! of the i-rowed minors of H. Since hi |A*+i, it follows 
that d; = AiA2 • - - hi divides d;+i = AiA2 • • • A»Ai+i, the quotient 
being A*+i. Hence these quotients are invariants (up to a unit 
factor in $ ) , so that the normal form of A is unique when we 
require that the A's shall lie in a specified system of non-associ­
ates. 

In a principal ideal ring every element neither 0 nor a unit 
can be factored uniquely (except for unit factors) into a product 
of powers of primes.* Suppose 

hi = pieiip2ei* • • • pk
eik-

Since Ai|At+i, the exponents of each prime factor form a se­
quence 

eni ^ en-i,i ^ • • • ^ eu (I = 1, 2, • • • , k). 

Such of these powers Peil as are not units are called the ele­
mentary divisors of A. They are defined up to unit factors. 

This treatment unifies the elementary divisor theory of mat­
rices with rational integral elements and that of the so-called 
\-matrices, that is, matrices with elements in the polynomial 
domain of a field. Every polynomial domain (with one indeter­
minate) of a field is a principal ideal ring,f the units being the 
numbers 5^0 of the field. 

The theory of equivalent matrices is an excellent example of 
the interdependence of algebra and number theory. I t seems to 
the writer that the elementary divisor theory appears simpler 
and more natural when it is looked upon as being fundamentally 
a branch of the theory of numbers. 

8. Congruence, If there exists a unimodular matrix U such 

* Van der Waerden, loc. cit., vol. I, p. 65. 
t Van der Waerden, loc. cit., vol. I, p. 60. 

file:///-matrices
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that A = UTBU, all matrices having elements in $ , then A is 
said to be congruent with B. 

Symmetric and skew matrices play an important role in the 
theory of congruence. Each of these properties is preserved un­
der this relation. If S+Q is congruent with 5i + Çi, where 5 and 
5i are symmetric and Q and Ci are skew, then S is congruent 
with 5i and Q with Ci. Hence if 2A =S+Q, the congruence in­
variants of S and Q are congruence invariants of A, and to­
gether they form a complete system for A except for rings in 
which 2 is a divisor of zero. 

I t is well known that the problem of the congruence of sym­
metric matrices is a problem of extreme difficulty. It is essen­
tially the problem of the equivalence of quadratic forms in the 
theory of numbers. How refractory this problem is may be seen 
by glancing through Professor Dickson's recent book.* 

I t is perhaps less well known that the corresponding problem 
for skew matrices is capable of complete and simple solution not 
only for matrices with rational integral elements, but for mat­
rices with elements in a principal ideal ring. I t seems perverse-
ness on the part of nature that an important problem should 
appear to be insoluble, while a similar problem of no evident 
importance should behave so well. Perhaps the ultimate ex­
planation will consist in showing that the skew matrix is really 
important.f At present it is sufficient for the pure mathemati­
cian that the theory is elegant. 

I wish at this point to call attention to a very useful notation 
due to A. Hurwitz.f If A and B are matrices, and 0 is a block 
of zeros, then 

\\A O |[ 

II O B II 
is called the direct sum of A and B, and is written A+B. 

THEOREM 5. Every skew matrix Q is of even rank P = 2JJL, and 
is congruent with a matrix 

* L. E. Dickson, Studies in the Theory of Numbers, University of Chicago 
Press, 1930. 

t Professor Albert has called my attention to the fact that skew matrices 
are of prime importance in the theory of pure Riemann matrices. 

% H, Kries, Contribution à la Théorie des Systèmes Linéaires, Zurich, 1906, 
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H = 
0 hi 

h 0 
+ 

+ 

0 
— hi 

10 0 ] 

loo 

hi 1 

o 1 

+ • 

+ ••• + 
0 hu 

- h» O 

where hi |A<+i. The numbers hi, hi, h2, h2, • 
cal form H are the invariant factors of Q, 

, hfiyhn of the canoni-

This theorem for the ring of rational integers was given by 
E. Cahen.* 

I shall not give the details of this proof, for it follows the 
lines of the proofs of Theorems 2 and 4. The 0's in the main 
diagonal of the skew matrix enable one to work successively on 
rows and columns. In the case of symmetric matrices the non­
zero elements in the main diagonal make a similar reduction 
impossible. 

9. Moduls. The set 2 of all numbers of the form 

ai€i + #2*2 4- + 0>nH 

where the a's range over a ring 9î and the e's are linearly inde­
pendent with respect to 9î, constitute a linear f or m modul. The 
e's constitute a basis for 8. 

If U= (urs) is unimodular with elements in 9Î, then 

Ci = ^Uij (i = 1, 2, • • • , »), 

also constitute a basis for 8, since every linear combination of 
the e's is a linear combination of the e"s, and vice versa. Con­
versely, every two bases of a linear form modul are so related 
by a unimodular transformation. 

The theory of moduls over the ring of rational integers was 
developed along the lines which we shall follow by A. Chatelet.t 
The establishment of Theorems 1,2, and 3 of this paper shows 
that Chatelet's results are true for every principal ideal ring. 

* Théorie des Nombres, vol. I, 1914, p. 282. 
t Annales de l'École Normale, (3), vol. 28 (1911), pp. 105-202; Comptes 

Rendus, vol. 154 (1912), p. 502; Leçons sur la Théorie des Nombres, 1913; 
Groupes Abêliens Finis, 1924. 
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Let 81 be a linear form sub-modul* of order n of 8, and let 81 
have the basis Xi, X2, • • • , Xn. Then 

X» = J^giM, (i = 1, 2, • • • , »), 

where d = (gr8) is a non-singular matrix with elements in 9?. 
We may say that d is associated with the basis Xi, X2, • • • , Xn 

of 81. Every non-singular matrix d determines in this way a 
basis of some linear form sub-modul of order n of 8. 

If 82, with basis /xi, JU2, • • • , \xn, is a linear form sub-modul of 
order n of 8], every number of 82 is in 81, and in particular 

Mi = 2_A'A/ — zl/Cijgjh^ky (i = 1, 2, • • • , »). 

The matrix d associated with the basis /xi, /*2, • • • , JUW of 82 is 
C d , where C is a non-singular matrix with elements in 9t. Thus 
81 contains 82 if and only if d is a right divisor of G2. 

In particular, two moduls 81 and 82 are equal if and only if 
d and d are left associates. A unique canonical basis for 81 may 
be determined in accordance with Theorem 1. 

Now suppose that $R is a principal ideal ring $ . The set of 
numbers common to two moduls 81 and 82 constitute a modul 
2d called the greatest common sub-modul of 81 and 82. I t may also 
be defined as that common sub-modul of 81 and 82 which con­
tains every common sub-modul of 81 and 82. If d , d , and Gd 
are matrices associated with 81, 82, and 2d respectively, then Gd 

is a right divisor of d and d , and every common right divisor 
of d and d is a right divisor of Gd- That is, Gd is a g. c. r. d. of 
d and d . Now Gd is unique up to a unimodular left factor—the 
same latitude of definition as the g. c. r. d. of two matrices. 

In a similar manner all numbers contained in either 81, or 82, 
together with their sums and differences, constitute a modul 
8m called the least common super-modul of 81 and 82. I t may also 
be defined as that modul containing 81 and 82 which is contained 
in every modul containing 81 and 82. If Gm is a matrix associated 
with 8m, it is clear from this last definition that Gm is a 1. c. 1. m. 
of d and d . 

10. Ideals. Let © be a linear form modul, with coefficients in 
a principal ideal ring <Ç, which is also a ring, and whose elements 

* If 9$ is a principal ideal ring, every sub-modul of 8 is a linear form modul. 
Van der Waerden, loc. cit., vol. II, p. 121. 
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are commutative with those of $*. If © has the basis ei, €2, 
• • • , en, then 

k 

where the constants of multiplication Cijk are in $ . Define the 
matrices 

Ivi == \Cisr)) Oj' = = \Cris) • 

Then both of the matric rings 

R(0 = xiRi + x2R2 + • • • + xnRn, 

S(%) = X1S1 + x2S2 + • • • + xnSn 

are isomorphic under both addition and multiplication with the 
numbers 

£ = #i€i + x2e2 + - - - + xnen 

of ©. Unless © is of very special formf the Ri are linearly inde­
pendent, and the Si are also. Thus we have two representations 
of @ as a matric ring. 

A sub-modul of © which is closed under multiplication on the 
left by numbers of © is called a left ideal.% Similarly right ideals 
and two-sided ideals may be defined. 

I t is known that every ideal has a minimal basis Xi, X2, • • • , Xn 

such that every number of the ideal is given by the form 

hi\x + 2̂X2 + • • • + hn\ny 

where the h's are in $ ; and if the ideal does not consist exclu­
sively of divisors of zero, the representation is unique, that is, 
the X's are linearly independent with respect to $.§ 

If Xi, X2, • • • , Xn form a minimal basis for a left ideal 3> where 

Xt = jL/gifih 

every number K of 3 is of the form 

* An instance of such a system is a domain of integrity of a linear associ­
ative algebra in the sense of Dickson. Algebren und ihre Zahlentheorie, 1927, 
p. 154. 

f This Bulletin, vol. 35 (1929), pp. 344-349. 
J Van der Waerden, loc. cit., vol. I, p. 53. 
§ Transactions of this Society, vol. 31 (1929), p. 74. 
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while every number a of © is of the form 

Since CTK is in 3 for all values of Si and &<, there exist numbers 
dr of $ such that 

(JK = ^2sikcgijCijh€h = XX&-*6** 

Hence 

In particular, when si = ôip and ki = 8iq, there exist values d w 

of dr. For these values 

2^8Q]'Cpjh ==: 2^dpqrgrh) 

or 

(1) GTyr = ^ G , Z>„ = (dprs)y (p = 1, 2, • • • , ») . 

That is, if the modul with which G is associated is a left ideal, 
matrices Dlf D2, • • • , Dn with elements in $ exist satisfying the 
above condition. 

The existence of the D's in (1) is a sufficient as well as a neces­
sary condition that G be associated with an ideal. Let dpqr and 
gqj be numbers of $ satisfying the above conditions. If we write, 
by definition, 

the modul* 

£1X1 + &2X2 + • • • + kn\n 

is closed under multiplication on the left by every number <r of 
©. For 

<TK = z2sikigijCljr6r = z2sikidlt8\8 

is again in the modul. 
If 3 i and $2 are two left ideals of © with bases Xi, X2, • • , Xn 

and MI, M2, • • • , Mw, respectively, the set of numbers 

* Transactions of this Society, vol. 31 (1929), pp. 71-90. 
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where the d's range over $ , is a linear form modul 8. Since 3?i is 
closed under multiplication on the left by the numbers of ©, 
the same is true of S. Hence 8 is an ideal. Since it generalizes the 
concept of ideal product in algebraic number theory, it is called 
the product of the ideals 3fr and -3*2 in that order.* 

If 3>i3>2 = $ , the latter with basis v\y *>2, • • • , vni set 

Then there exist numbers h ah of 3̂ such that 

Tha t is, 

k,r,t k,t 

or 

Z^likMjrCkrt = /Zhjikfikt, 
k ,r A; 

which can be written in either of the forms 

GiS(fij) = HijGzy Hij = (hrjs), 

GÏRT (Xi) = HziGs, Hu — (hirs), 

where Gi is associated with 3?i> ^2 with 3*2, and G3 with their 
product $ . Similarly it may be shown that 

Gz = J^Kx&SQii) = Z^«A^T(Xy), 

where X u and X"2y are matrices with elements in $ . Thus Gz 
may be readily determined as the g. c. r. d, of GiS(fjLi), Gi5(ju2), 
• • • , GiS(fjLn) or (if preferred) as the g. c. r. d. of G2i£

T(Xi), 
G2£T(X2), • • • , G2R

T(kn).j 

11. Determination of a Minimal Basis. If ÛJI, ce2, • • • , O^ are 
numbers of ©, the set of numbers 

* G. Shover and C. C. MacDuffee, this Bulletin, vol. 37 (1931), pp.434-438. 
t The problem of finding the minimal basis of the product of two quadratic 

ideals whose minimal bases are given was discussed by W. B. Carver, American 
Mathematical Monthly, vol. 18 (1911), pp. 81-87, with no simple results. 

Z 
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where the £'s range over ©, satisfies the definition of an ideal $ . 
As stated before, this ideal is known to have a minimal basis 
Xi, X2, • • • , Xw, such that the form 

A1X1 + A2X2 + • • • + A»Xn, 

where the h's range over ©, gives all the numbers of 3». The proof 
of the existence of the minimal basis is existential, hinging upon 
the ability to select from an infinite set of numbers of © one 
whose norm is minimal. 

The effective determination of the minimal basis has been 
considered a problem of considerable difficulty. In 1917 M. 
Cipolla* gave a complete solution of this problem for quadratic 
fields, but even in this simple case both method and results are 
complicated. 

The method of integral matrices affords a simple and easily 
stated solution of this problem in its general form.f Let S (at) be 
the second matrix of a^ and let B be a matrix associated with 
the minimal basis Xi, X2, • • • , Xn to be found. The matrix B is 
a g. c. r. d. of 5(«i), S(a2), • • , S(ak). 

Since 3 is an ideal, it contains 

eroii = ^jjCrijPj, 0 , j = 1, • • • , n; i = 1, • • • , * ) . 

That is, if ce* = ^ai3-€j, & = S& -̂e,-, 

h ,s 3,8 

Z^dihCrhs = zlqrijbjs, (r, s, j = 1, • • • , n\ i = 1, • • • , k). 
h j 

In matric notation this is 

S{oLi) = QiB, Qi = (qris), 0' = 1, • • • , k). 

Hence B is a common right divisor of the matrices S (a»). 
Since every jS* is in $> there exist numbers 

Trj = ^Pn'heh, (r, A = 1, • • • , »; i = 1, • • • , k), 
h 

of © such that 

* Atti Accademia Catania, (5), vol. 10 (1917), No. 20. 
f Mathematische Annalen, vol. 105 (1931), pp. 663-665. 

E 
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0r = ZL^rjOLj, 
3 

That is, 

8 j,h,l,8 

whence 

bra = ^prjhdjlChls, (f, S, k, l = 1, • • • , U) j = 1, • • • , k) . 
2,h,l 

In matric notation this is 

B = ^PiS(ai)9 P3= (Pris). 

Thus B is a g. c. r. d. of the matrices S(ai). 
I t thus appears that a problem which is of great complexity 

when approached by the methods of elementary number theory 
and congruences can be given a very simple and natural treat­
ment when the greatest common divisor theory of integral mat­
rices is applied. Furthermore, in the case of algebraic fields at 
least, a constructive proof replaces an existential proof of the 
existence of a minimal basis of an ideal. 
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