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ON T H E REPRESENTATION OF ANALYTIC 
FUNCTIONS OF SEVERAL VARIABLES 

AS I N F I N I T E PRODUCTS* 

BY J. M. FELD AND F. NEWMAN 

1. Introduction. In a paper by J. F. Ritt soon to appear in 
the Mathematische Zeitschrift, he proves that any function 
f(z), analytic, and equal to unity at 2 = 0, can be represented in 
one and only one way as an infinite product ÜT(1 + cnz

n), 
which converges absolutely for \z | ^ 1/(62?), where 2? is the least 
upper bound of the. infinite sequence |&i|, |&2|1/2, • • • , 
|^fc|1/fc, • • • and bk is the coefficient of zk~l in the Taylor 

expansion of f'(z)/f(z). 
The object of this paper is to extend this result to functions 

of two variables. The first part will be concerned with a 
demonstration that an analytic function f(x, y) — 1 +J2bmnXmyn 

can be uniquely represented as an absolutely convergent infinite 
product Ti(l+amnx

myn) with constant a's. The second part 
will consider the representation of f(x, y) in the form 111(1 +^V) 
where Pn is a homogeneous polynomial in x and y of degree n. 
Although the proof in each case is carried out for two variables, 
it will be evident how to extend it to functions of any number of 
variables. I t should be noted, however, that the analytic 
functions considered in this paper constitute a restricted class 
of such functions, namely, those which equal unity at the origin. 
For one variable the corresponding assumption is not an 
essentially restrictive one. 

2. THEOREM 1. If f(x, y) is analytic and equal to unity at 
(0, 0), then in the neighborhood of (0, 0) it admits a unique 
representation as an absolutely convergent infinité product 

f(*>y) = 11(1 + amnXmyn) 
m ,n 

with constant amn. 

Let the Taylor's expansion of f(x, y) at (0, 0) be 1 +%2bmnx
myn. 

Since /(O, 0) = 1 there is a neighborhood about (0, 0) for which 

* Presented to the Society, October 26, 1929. 
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log ƒ(x, y) will be represented by an absolutely convergent 
expansion 22Cmnx myn. By Lemaire's generalization of a theorem 
of Cauchy (Bulletin des Sciences Mathématiques, 1896, p. 286), 
the set \Cmn |1 / ( m + w ) is bounded; we denote the least upper 
bound by r. 

Assuming the product expansion and taking logarithms, we 
find 

(1) 2lCmnXmyn = Z ( - 1 ) P + 1 

m ,n m,n,p P 

We denote the common divisors of a fixed pair of m and n by 
^ o = l , di, - - • ,dt—D, where D is the greatest common 
divisor. Observing that 

(amldi,nldiXmldiynldi)di _ (am/di tn/di)diXmyn 

di di 

we find for the coefficient of xmyn in the second member of (1), 

Z ( - l)d"+1-(am/di,n/di)
dK 

i=o di 

Equating coefficients of xmyn, we have 
1 1 

(2) Cmn = amn + z2 ± -—(am/di,n/di)di-
1 di 

If neither m nor n is zero, then (2) will not involve any a with 
a zero subscript. This is also evident from the consideration 
that a zero subscript represents a term in the product of the 
form (l+a^ny71) which could not give rise to a term containing 
x when expanded in a logarithmic series. I t follows from our 
hypothesis that the subscripts 0 0 never occur. 

When m or n is unity, (2) reduces to 

(3) Cln = din* 

From (2) we get 

(4) \amn I S I Cmn I + S — I am/di.n/di \ di. 
1 öi 

If (1/dfc) lam/dfc.n/dk |d* is the greatest of the terms following 
Cmn in (4), then since the number of common divisors cannot 
exceed D/2, we obtain 
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I I I D \ I 
(5) I amn I ^ I Cmn -4 I dm/dk,n/dk \ dk » 

There are two possibilities to be considered in (5) ; (A) if the 
second term on the right of (4) is less than or equal to the first, 
then \amn\

ll{m+n) ^{2\Cmn\)1Km+n) ^2r, otherwise, (B) 

j dmn I < D I ttm/dk,n/dk \ k • 

Since JD
1'<"+»>^Z>1'1), we find from (B) 

(6) | amn | i/<«+*> < DV» | am/dk,n/dk \ dk"m+n). 

We can repeat the reasoning of (A) and (B) employing 

I n , . , . I dkl(m+n) _ I a . , ., I l/(m/d*+n/dfc) I U>m/dk,n/dk\ — \ U>m/dk,n/dk\ 

If (B) holds again, the inequality of the type (6) will now involve 
the highest common divisor of m/dk, n/dk, say D\. Since 
dkï^l, D^2Di. Repeating the process until we come to an "a" 
for which (A) holds, we have from (A) and (6) 

(7) | amn | 1 / (M+n) < Dl'DD^Dy • • • D^Di(2r). 

The D's are a decreasing sequence, D]+i^2Dj, which at the worst 
will end at Di = 2. This is seen readily from (3), (5), and con­
dition (A). 

From (7), we find 

log) amn\
 1 / ( m + n ) < — log£> + — log£>!+ • • • + log2r. 

D D\ 

We consider first the case J 9 ^ 3 , and since DJ+i^2DJy we have 

00 i 

log I amn | !/<"•+»> < log 2r + £ — log 2k = log 2r + log 4 
1 2k 

= log8r. 
When Di = 3, 

1 
log | amn \ 1/CK-») < log Ir + £ T T I l o8 (3*2*) 

o 3 - 2 * 

1 - 1 1 • log 2* 

- . » g 2 , + T ( 1„ g3)2;-+ T ç — 
2 1 

= log 2r H log 3 H log 4 < log 8r. 
3 3 
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In any case, 
\amn\

xlim+n) <Sr. 

By Lemaire's theorem, the associated power series ^amnx
myn 

is absolutely convergent for the associated regions whose radii 
are given by \p | \p' | < l / ( 8 r ) and therefore in any such pair of 
regions ƒ(x, y) will be represented by the absolutely convergent 
product Tl(l+amnXmyn). From the form of the recursion 
formula it follows at once that the representation is unique. 
The theorem can be extended to any number of variables by a 
similar proof. 

3. THEOREM 2. If f(x, y) is analytic in the neighborhood of 
the origin and if /(O, 0) = 1, there exists a region \x\ ^ p , \y | ^ p 
in which ƒ(x, y) can be represented in one and only one way as an 
absolutely convergent infinite product I I ? ( l+ (?n ) , where Qn is a 
homogeneous polynomial in x and y of degree n. 

Let the Taylor expansion of f(x, y) at (0, 0) be written in 
the form 

(8) f(x,y) = 1 + Pi + P 2 + • • • + Pn + • • • , 

where Pn is a homogeneous polynomial in x and y of degree n. 
Then there exists a pi such that (1) converges absolutely for 
\x | <pi and \y \ <p\. The function of x, y and ty f(xt, yt) is 

analytic for x, y and / small and has the expansion 

f(xt,yt) = 1 + Z : = i ^ n / " . 

For small values of x, y and /, log ƒ(xt, yt) is analytic and has an 
expansion 

(9) log f(xt}yt) = Axt + A%P + • • • + Ajn + • • • , 

where An is a homogeneous polynomial in x and y of degree n} 

and where the set of functions |^4w |1 / n has an upper bound. 
Let r be the least upper bound of this set in the region in which 
(9) holds. 

Setting 

(io) i + ipnt*= n a + ön/"), 
i i 

we obtain Pi = Qi, P2 = (?2, Pz — Qz + QiQz, etc., and it is evident 
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that we can solve for all the Q's by means of recursion formulas, 
and that Qn is homogeneous in x and y of degree n. Taking 
logarithms of both members of (10) and equating like powers of 
/, we get 

(11) An = Qn± —Qnjd1±—Qnjai ± • • • ± -Q\ 

where di is an integral divisor of n. Therefore 

Qn | =g \An | + 

where 

V1 

ZTVn/Dl 

1 D1 

is the greatest of the terms 

—Qn/di , (<*<>!). 

By a procedure like that used in the proof of Theorem 1, we 
arrive at the inequality 

| Çn | 1/w < n^D^^D1^ • • • DUD*(2r). 

We therefore have, as in the preceding case, \Qn\
lln <8r . Thus 

there exists a p2 such that ]C|(?n|/n converges for | # | ^ p 2 , 
|:y|=*P2, \t\ ^ l / (8r) . Therefore tl(l + Qjn) must converge 

absolutely in this region. Since 

f(xt,yt) =n[i+G~(**,y')L 
we have the result that 

/(*,y) = n(i + e.) 
in the region |x | ^p=p 2 / ( 8 r ) , \y | ^p=p 2 / ( 8 r ) . 
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