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TRANSVERSE SEISMIC WAVES ON T H E SURFACE 
OF A S E M I - I N F I N I T E SOLID COMPOSED OF 

HETEROGENEOUS MATERIAL* 

BY H. BATEMAN 

In his Adams' Prize Essay of 1910, A. E. H. Lovef dis­
cussed the propagation of transverse seismic waves in a 
homogeneous superficial layer covering a homogeneous solid 
differing from the surface layer in rigidity and density. The 
analysis has been extended by K. Aichif and E. Meissner§ 
to the case of a heterogeneous material stratified in horizontal 
layers. Aichi adopts an exponential law for the variation 
of secondary wave velocity 11 with depth and obtains a 
solution involving Bessel functions. Meissner considers 
various laws of variation of density and rigidity, and in one 
case he also obtains a solution involving Bessel functions. 
In this paper, a solution is given for a heterogeneous material 
of such a kind that the functions occurring are all of an ele­
mentary nature. 

Using the same notations as Aichi, but taking the positive 
direction of the axis of z upwards, the axis of x being in the 
direction of propagation, we assume that the transverse 
displacement rj is given by the equation 

(1) rj = Y(z)co$(pt + fx), 

and that the density p and rigidity ju of the material depend 
only on the coordinate z. 

* Presented to the Society, San Francisco Section, October 29, 1927. 
f Some Problems of Geodynamics, Cambridge University Press, 1911, 

p. 160. 
J Proceedings of the Physico-Mathematical Society of Japan, vol. 4 

(1922), pp. 137-142. 
§ Proceedings of the Second International Congress for Applied Mathe­

matics, Zurich, 1926. 
|| This is the quantity c defined by equation (5). 
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The components of stress across an area perpendicular to 
the axis of y are juorç/âx, 0, ixdrj/dz, respectively, and so the 
equation of motion 

d2r) d / dr)\ d / dr)\ 
P dt2 ~ dxXdx) dzXdz) 

gives Meissner's equation 

d / dY\ 
(2) - ( M - - ) + (pp2 - ixP)Y = 0. 

dz\ dz / 

When the rigidity fi is constant, this equation reduces to 
the equation 

d2Y / pp2 \ 

<3> * + ( T - / , ) F " ° I 

used by Aichi. 
In addition to the differential equation, Y must satisfy 

the boundary conditions 7 = 0 when z~ — oo, dY/dz = 0 
when z = a. The first of these conditions expresses simply 
that there is no deep penetration of the waves while the 
second condition expresses that there is no tangential stress 
at the free surface s = a. 

Taking first the case of a constant value of jit, we write 
pp

2 

(4) — - = In2 sech2 nz + k2, ƒ2 = n2 ctnh2 <a + k2, 
M 

where k2> co, and n are positive constants when p is given. 
Our law of variation of p thus apparently depends on the 
frequency of the waves, and is definite only when this fre­
quency is assigned. We shall therefore regard this particular 
p as a constant, and we shall use a different symbol P when 
the frequency is varied. 

I t is easily seen that the differential equation and the first 
boundary condition are satisfied by the equation 

The second boundary condition is satisfied if 

sinh2 co tanh2 na — sinh co cosh co tanh na + 1 = 0. 
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Regarding this as an equation for tanh na when co is given, 
we find that if cosh to > 2 there are two real values of tanh na, 
both of which are positive. This means that at first p in­
creases with the depth. Now c, the velocity of propagation 
of "S" waves, is given by the formula 

(5) c2 = - . 
P 

Hence at first c decreases downwards reaching a minimum 
value at the plane z = 0. Below this plane c increases with 
the depth and gradually approaches a limiting value which 
is greater than the value at the surface. The existence of 
a solution in the present case is particularly interesting 
because in Love's case a solution exists only when c is 
greater for the substratum than for the upper layer. Let b 
denote the value of c at the surface and v the velocity of the 
transverse waves represented by (1); then we have 

P P2 

v — — , — = 2n2 sech2 na + k2, f2 = n2 ctnh2 co + k2 ; 

ƒ b2 

but 
2 sech2 na = ctnh2 co + ctnh co(ctnh2 co — 4 csch2 co)1/2 ; 

therefore 

p2 

ƒ2 = if W2 c t n h ^(ctnh2^ - 4 csch2 co)1'2. 
b2 

This equation tells us that v is greater or less than b accord­
ing as the lower or upper sign is given to the square root. 
When the upper sign is taken, the amplitude Y begins to 
increase downwards until it attains a maximum value at a 
level z given by the equation 

2sinh co tanh nz = cosh co — (cosh2 co — 4)1/2 ; 

beyond this level the amplitude decreases steadily to zero. 
When the lower sign is taken the amplitude decreases steadily 
to zero from the surface downwards. To discuss the effect 
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of a change of frequency, we consider the propagation of the 
disturbance 

7j = Y(z) cos (Pt + Fx), 

the law of variation of density with depth being the same as 
before. Writing 

2P2 = m{m + l)p2, 2F2 = m(m + l)k2 + 2a2n2, 

where m and a depend on P but p is constant as before, we 
find that Y must now satisfy the differential equation 

d2Y 
(6) h n2Y[m{m + l)sech2 nz - a2] = 0. 

dz2 

A particular solution is given by the hypergeometric function 

(7) F = enffZF(~ m, m + 1 ; 1 - <r ; £), 

where 
2£ = 1 — tanh wz. 

When m is an integer, this function is a polynomial in £ 
except for the exponential factor. If <r is positive, Y will 
satisfy the boundary condition at z = — oo. The boundary 
condition at s = a gives a relation between <x and the quantity 
tanh na, which will be denoted by the symbol r. In the cases 
ra = l, 2, 3, the relations are 

ar2 — err + T2 = 1 , 

o-3 — 3(72r + 6OT2 — 6T3 = 4<r — 6r, 

er4 - 6azr + 2U2T2 - 45crr3 + 45r4 = 10a2 - 39OT + 54r2 - 9, 

respectively. Portions of the curves represented by these 
equations are drawn roughly in Fig. 1, a and r being rec­
tangular coordinates. 

FIG. 1 
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For large values of m there are several possible values of 
<r corresponding to a given value of r ; thus when m = 3 and 
r = l, we can have (7 = 0, 1, 2, or 3. 

For all integral values of m, unity is a possible value of a 
corresponding to r = 1, and when r is very nearly equal to one, 
there is a value of a which is very nearly equal to one. 

An approximate expression for this value of <r may be 
derived from equation (7) by differentiating with respect 
to z and retaining only first powers of 1 —r after z has been 
put equal to a. The resulting equation, 

t m(m + 1 ) "1 Tmim + 1)1 

gives approximately 

m(m + 1) 
ff-l+-i——i(l-r). 

Using this value of a-, we have approximately 

2F2 = 2n2 + m(m + 1) [k2 + n2(l - r)] 

P 2 

= 2n2 + 2— [k2 + n2(l - r ) ] . 
p2 

Now the wave-velocity v and the group-velocity u are given 
by the formulas,* 

1 F 
— = = (pP)-^\n2p2 + P2k2 + ? V ( 1 - r ) ] 1 / 2 , 
v F 
1 dF r 

— = = P^- x [^ 2 + n2(l - r)] 
u dF r ., 1/0 

• [ ^ 2 + P2&2 + P V ( 1 - r ) ] " 1 / 2 , 
w nV2 

- = 1 + r F2k2 + P V ( 1 - r) 

Since 1— r is positive the group-velocity is greater than the 

* H. A. Lorentz, Problems of Modern Physics, p. 17. 
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wave-velocity. This result is fundamentally different* from 
that obtained in Love's case of two adjacent homogeneous 
layers, and also from that obtained by Meissner for the case 
of a heterogeneous medium in which the density and rigidity 
vary continuously and monotonically. Some doubt may be 
felt with regard to the validity of our approximation and 
the differentiation with respect to P and it is hoped that the 
result will be checked by some independent method. 

Turning now to the case in which the rigidity varies with 
the depth, we put 

Z = tx^Y ; 

the differential equation satisfied by Z is then 

dz2 L M 2n dz2 W\dzJ J 

This differential equation may be reduced to the type already 

2o)2sech2 nz + k2, 

P2k2 

h a2n2 + h2
9 

p2 

2co2 sech2 nz + k2, 

P2k2 n2 

——+ — + <rW, 
p2 4 

* The group velocity is generally less than the wave-velocity. This is 
shown very clearly in Meissner's diagrams but Meissner's definition of the 
group-velocity is different from ours. 

considered in the following cases : 

pp2 

(i) ix = ve~2hz, = 
M 

F2 = 

pp2 

(ii) IJL = v cosh nz, = 
M 

F2 = 

where co is an arbitrary constant. 
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