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AN ASSEMBLAGE-THEORETIC PROOF OF T H E 
E X I S T E N C E OF TRANSCENDENTALLY 

TRANSCENDENTAL FUNCTIONS* 

BY J. F . RITT AND ELI GOURIN 

1. Introduction. The first example of a transcendentally 
transcendental function,! that is, of an analytic function 
not a solution of any algebraic differential equation, was 
given by Holder,{ who, in 1887, showed that the gamma 
function does not satisfy any such equation. Other in­
vestigations have followed Holder's. In some of these, 
functional equations of different types are studied, to find 
which of their solutions satisfy algebraic differential equa­
tions. In others, e.g., in that of Hurwitz, on power series 
with rational coefficients § and in that of Ostrowsky on 
Dirichlet series, || certain analytic expressions are examined 
and conditions found under which they represent trans­
cendentally transcendental functions. 

In the present note, the existence of transcendentally 
transcendental functions is shown on an a priori basis, by 
a proof resembling that proof of the existence of trans­
cendental numbers which is based on the countability of 
the algebraic numbers. The totality of algebraic differential 
equations has the same power as the totality of analytic 
functions, but there exists a countable set of the equations, 
namely, those with integral coefficients, whose solutions 
form the totality of the solutions of all algebraic differential 
equations. I t follows that the solutions of the countable set 
of equations do not exhaust the analytic functions. 

* Presented to the Society, December 29, 1926. 
t This term is due to E. H. Moore, Mathematische Annalen, vol. 

48 (1896), p. 49. 
X Mathematische Annalen, vol. 28 (1887), p. 1. 
§ Annales de l'Ecole Normale Supérieure, vol. 6 (1889), p. 327. 
|| Mathematische Zeitschrift, vol. 8 (1920), p. 241. 
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Our result throws some light on the distribution of trans-
cendentally transcendental functions among the analytic 
functions. We prove that it is possible to choose the coefficients 
in the series 

#0 + a,\x + • • • + anx
n + - - • 

so that the series does not satisfy formally any algebraic 
differential equation, with the following degree of freedom: 

a0 may be given any value not on a certain countable set; 
a\ may then be given any value not on a certain countable 

set which depends on the choice of a0; 

an may be given any value not on a certain countable set 
which depends on the choices of a0, • • • , a n - i ; 

Any set of a's which do not increase too rapidly give a 
transcendentally transcendental function. 

2. Algebraic Differential Equations, Let y(x) be any 
function satisfying an algebraic differential equation. Repre­
senting by yp the pth derivative of y, we write the equa­
tion for y in the form 

(1) X) c^x^yi^ • • • y*» = 0. 

Here each c is a constant not zero. It is understood that the 
expressions xl • • • yn

in are distinct from one another. 
Now (1) states that, for the given function y(x), the 

expressions xl • • • yn
ln are linearly dependent. Thus, 

if we set the wronskian of these expressions equal to zero, 
we shall have an algebraic differential equation for y{x), 
usually of order greater than n, with integral coefficients. All 
that it is necessary to show is that the wronskian does not 
vanish identically in x • • • yn> If it did, every function 
with n derivatives would satisfy an equation like (1), that 
is, an equation with the same expressions xl • • • yn

in as 
appear in (1), with constants c not all zero. But because 
we can construct a function with any given values for itself 
and for its first n derivatives at any number of points, it 
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would follow easily that an equation like (1) exists, with 
coefficients c not all zero, which is an identity for x, • • • , yn 

arbitrary. This is absurd. We know thus that y(x) satisfies 
an algebraic differential equation with integral coefficients.* 

3. Transcendentally Transcendental Functions. The alge­
braic differential equations with integral coefficients are 
countable. Let them be arranged in a sequence 

(2) «i = 0, e2 = 0, • • • , en = 0, • • • . 

If the polynomial Ci vanishes when x = h, for all values 
of the variables other than x which appear in e^ then d is 
divisible by x — h. As each d has only a finite number of 
factors of the form x — h, the polynomials of (2) have, collec­
tively, only a countable set of such factors. 

If we replace x in (2) by any value distinct from the h's of 
the countable set just mentioned, the equations of (2) 
become non-identical equations which do not involve x, 

(3) e{ = 0, el = 0, • • • , el = 0, • • • . 

Of course, an e[ may be a constant. This simply means that 
£ t = 0 has no solution analytic for the chosen value of h. 

We can now choose y anywhere, except on a countable 
set, in such a way as to reduce the equations of (3) to non-
identical equations involving neither x nor y, and can 
continue in the same fashion for yi, etc. We find thus a set 
of values of our variables which satisfy no equation (2). 

If the values chosen for x, y, yi, etc., are respectively h, 
ko, ki, etc., the power series ^2kn(x — h)n/nl will not satisfy 
formally any algebraic differential equation. The series 
y^Jknx

n/nl cannot satisfy such an equation either. This 
proves the result stated in the introduction. 
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* Hurwitz, loc. cit., states without proof that a power series with 
rational coefficients which satisfies an algebraic differential equation, 
satisfies such an equation with integral coefficients. Very probably he had 
the more general result just proved in mind. In any case, the countability 
of the equations with integral coefficients plays no role in Hurwitz's work. 


