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ON CURVES KINEMATICALLY RELATED TO A 
GIVEN CURVE* 

BY H. PORITSKY 

In a space S is given a curve C. With any point P on it 
is associated a position of the moving trihedron formed by 
the tangent, principal normal, and binormal to the curve at P . 
We might call an indicatrix trihedron a trihedron whose axes 
pass through a fixed point, and are parallel to those of the mov­
ing trihedron, and denote it by 7. As the point P describes 
the curve, the indicatrix trihedron will rotate about (lines 
passing through) its vertex. This motion, or the motion of a 
space rigidly connected to the indicatrix trihedron, with refer­
ence to the space S, we shall denote by [I, S]. The problem 
solved in this paper is, to find all the curves C' such that their 
indicatrix trihedra V (when drawn with the vertex as I) will 
experience a motion [ƒ', S] identical with the motion [I, S]; 
in other words, to find curves Cr, whose points P' can be made 
to correspond to P so that, as the curves are described by 
corresponding points, their indicatrix trihedra I, V remain 
relatively invariant. Certain interesting families of curves Cf 

are shown to exist. A kinematic method of treatment has 
been adopted. 

Denote unit vectors along the tangent, principal normal, 
and binormal of C by i, j , k,f respectively. I t is known that 
the motion [I, S] is completely characterized by the fact that 
there is no component of rotation along the principal normal 

j.% The components of the rotation along i, k, if P describes 
C with unit velocity, may be identified with the torsion r 
and the curvature K. If the velocity of P is not unity but 
v — ds/dt (s is arc length, t time), the components of rotations 
become vr, VK. Thus the rotation vector always lies in the 
plane ir, through i, k, and parallel to the rectifying plane. 
I t will be noticed that T is a plane of (i.e., fixed relative to) 
the moving space V. 

* Presented to the Society, December 28, 1922. 
t Clarendon type will be used to denote vectors. 
% Darboux, Théorie des Surfaces, 2d éd., vol. I, p. 13. 
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We must now consider two cases : 
1. The motion [I, S] consists of a rotation about a fixed line. 
2. The motion [I, S] may be generated by rolling a cone 

fixed in I upon a cone fixed in S. The cones are the loci of 
instantaneous axes of revolution in I and S respectively. 
Case 1 is the special instance when the cones degenerate into 
lines. 

Since, as just mentioned, the rotation vector has no com­
ponent along j , the rolling cone, whose elements bear the 
rotation vectors, reduces to the plane ir (case 2), or else the 
fixed axis of rotation is a line in T (case 1). In the latter case 
the components of rotation along i, k have a fixed ratio. 
Hence 

- = const. = tan a, 
r 

where a is the angle which the fixed rotation axis makes with 
I. C is known to be a cylindrical helix. Leaving this case 
for later consideration, we shall first consider the general case. 

Let primed letters indicate objects referring to C' of the 
same kind as the unprimed letters denote for C. Let corre­
sponding points on the two curves be given by the same value 
of t; thus P(t), Pf(t) will denote corresponding points on C, C'', 
while P , P' denote merely any two points on C, C''; similarly 
i(t), i'(t) will be used for unit tangents at two corresponding 
points, and so forth. 

If the motions [I, 8], [I'y 8] be identical, the fixed and the 
rolling cones for the two motions, as well as the angular 
velocities, must be the same. But since the rolling cones reduce 
to the planes 7r, T' which are parallel to the rectifying planes 
at POO, P'(t)} respectively, ir(t), irr(f) must coincide, and so 
must the principal normals 7 00, f (f) which are perpendicular 
to 7T, 7r7. The rotation by means of which I(t) is transformed 
into J'00 (i(f),j(t), k(i) going into i'(f),j'(f), kf(t)) is therefore 
about the line bearing j(t), f (t), and is of a constant angle 0, 
since the two indicatrix trihedra are relatively fixed. Re­
solving the unit vectors of V along those of J, we get 
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i'(f) = i(f) cos 0 + k(f) sin 0, 

a) j\t)=m, 
k'(f) = - i(t) sin 6 + k(f) cos 0, 

6 being independent of t. 
Equating the rotation vectors 

(2) v\t)[j'(t)i'{t) + "'Wit)] = v(t)[r(t)i(t) + K(f)k(f)], 
we have identified the fixed cones and the angular velocities. 
Solving (1) for i, ft, in terms of i', k', substituting in (2) and 
equating coefficients of like vectors we get 
/ON v'ttWit) = v(t)r(f) cos 0 + v(t)n(t) sin 0, 
( } v'(t)Kf(t) = - v(t)r(t) sin 0 + v(t)ic(t) cos 0. 
Nothing is lost in generality if we identify the arc length 
along the curve C with time, thus letting v(t) = 1. 

Having chosen 6, the successive positions of V and con­
sequently also of V are determined as functions of t. The 
curve C' itself is not specified till we give v' = ds/dt, whereupon 
we obtain C' by vectorial integration of v'(t)i'(t) (one must also 
give the starting point). All the curves that we obtain from 
a fixed 0 by varying v' can be made to correspond to each 
other, so that at corresponding points (given by the same 
values of f), the indicatrix trihedra coincide, and are thus to 
each other in relation of Combescure. 

We shall restrict ourselves for the present to the case where 
vf — 1, but will let 0 take on any value between 0 and 2ir; 
the curves Cf, which we are seeking, will have any two of their 
points the same arc length apart as the points of C to which 
they correspond. We may now put s' = s = t where s' is the 
arc length along C ; (3) reduces to 

, r(f) = r(t) cos 0 + n(t) sin 0, 
1 ) Kf(t) = - r(t) sin 0 + K(t) cos 0. 

If we start all the curves C' with the point sf = 0 at a 
common starting point Q, there will be obtained a one-
parameter family of curves F, one curve corresponding to 
every value of the parameter 0. The given curve C corre­
sponds to 0 = 0. Ail other curves that have an indicatrix 
trihedron V fixed relative to I may be obtained from some one 
curve of F by a transformation of Combescure. (3') shows 



74 H. PORITSKY [Feb., 

that the curvatures and torsions of the curves of F are certain 
linear combinations of those of the initial curve. The family 
F has some interesting properties which we now proceed 
to investigate. 

Denote by P(0, s) the vector drawn from the point Q to 
any point Pf on the curves F; similarly replace i'(t), f(t), 
k'(t) by f(0, s),j(0, s), k(0, s). Between P and i we have the 
relation 

(4) 

whenc 

(4') 

ds 
;e by integration, since P(6, 0) = 0, 

P(e, s) = fS 1(0, s)ds. 
Jo 

Using (1) we obtain 

(5) P(0, s) = cos 0 f* i(0, s)ds + sin 0 Pfc(0, s)ds. 
Jo Jo 

TV 

Since k(0, s) = i(0 + -̂  > s)> (5) becomes 

(50 P(0, s) = cos 0 p i ( 0 , 5)(fe + sin (9 C°i( ~, s J (fo, 

and, using (4r), we find 

(6) P(0, s) = cos 6 P(0, ^) + sin (9 P ( v * ) ' 

If we hold s constant and let-0 run between 0 and 2ir} the end 
point of P(0, s) will describe the locus of the corresponding 
points on the curves F, which are at an arc length s from Q. 
From (6) we conclude that these corresponding points always 
lie on ellipses E. The latter have their centers at Q, and the 
vectors P(0, s), P(TT/2} S) are conjugate semi-axes. Obviously, 
any two curves whose values of 9 differ by 7r/2 will yield conju­
gate axes of the ellipses. We might call such curves conjugates 
of each other. The tangents to two conjugate curves are 
perpendicular to each other. 

When s is small the ellipses approximate a circle. For, 
from (5), P(0, s) = [cos0 i(0, 0) + sin0 k(0, 0)]s approxi­
mately for small s. The plane of this circle is perpendicular 
to the common principal normal of F at Q. 

In the plane 7r(0) through /(0, 0), k(0, 0), let us set up a 
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system of rectangular Cartesian axes (x, y) with origin at the 
vertex of I, the end-points of the two unit vectors mentioned 
having coordinates (1, 0), (0, 1), respectively. The unit 
circle described by f(0, 0) now has for its parametric equations 

(7) x = cos 0, y — sin 0. 

Similarly, in the plane of the ellipse E, described by JP(0, s) 
when s is held fixed, let us set up a system of oblique Cartesian 
coordinates (£, rj) the origin being at Q, while the axes and 
scales on them are chosen so that the coordinates of P(0, s), 
P(T/2,S) are (1,0) and (0, 1), respectively. Any vector 

aP(0, s) + 6P(7r/2, S) will then have for the coordinates of its 
end-points £ = a, rj = b. Hence, using (6) we get for the 
parametric equations of the ellipse, 

(8) £ = cos 0, rj = sin 0. 

Now consider any affine projective transformation carrying 
the plane (x, y) into (£, rj) so that for corresponding points x = § 
and y = rj. Such an affine projective transformation will send 
the circle (7) into the ellipse (8), corresponding points being 
given by the same value of 0. Therefore, corresponding points 
on two ellipses are projectively related. If we join such 
points by drawing corresponding secants for the curves, that 
is, secants between two corresponding points, we obtain a 
ruled surface of (not higher than) the fourth degree. By 
passing to the limit we get a similar result for the tangents. 

The result obtained that points of F lie on ellipses E is 
only a special case of a more general theorem. If we call M 
the motion described by the moving trihedron of F as 6 is 
varied but s is held fixed, and denote by R any point fixed 
to that trihedron, then the path of R as a result of the motion 
M will be an ellipse. For 

QR = QP+PR 

= P(0, s) + df(0, s) + crf(e, s) + c3ft(0, s), 

where ci, c2, c3 are constants. Using (1) and (6) we obtain 

QR = cos 0[P(O, s) + cj(fl, s) + csk(0, s)} 

+ sin 0 J P ( | , * )+ d ^ | , , ) + cjl(ï, * ) ] + cj(0, s); 
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s being held fixed = s0, this is the equation of an ellipse having 
its center at c2./(0, so), that is, on the line through Q having 
the direction of the principal normals at the points P(6, s0). 

The movements M in which all points describe ellipses are 
of the type described by Darboux in one of his notes to Koenigs' 
Kinematics* I t is there proved that this is the only possible 
movement in which the trajectories of all points are plane 
curves, except for the case where the trajectories lie in a family 
of parallel planes. A line generally describes a surface of the 
fourth degree. Such a motion may be generated by proper 
rolling and slipping of two circular cylinders whose radii are 
in the ratio 1 :2 . The axes of these cylinders will in the 
present instance be parallel to the principal normals. 

Since the relation (3') between /c, r and K', r' is the same 
as between the coordinates of the same point in a plane referred 
to two sets of rectangular axes with a common origin and 
forming an angle 0 with each other, it follows that if K, T 
satisfy an algebraic relation, K', T' will satisfy a relation of the 
same degree. Thus, if K, T satisfy a linear relation so that C 
is a Bertrand curve, all the curves of F will be Bertrand curves. 
There will then exist two values of 6 for which K' = const., 
and two other values differing from the former by ir/2 for which 
T' = const. The latter curves are the conjugates of the 
former. 

The expression [K2 + r2]1 / 2 gives the rate at which the 
principal normal or the rectifying plane turns, and is sometimes 
spoken of as the "normal" curvature. From (3) it follows 
that for all the curves of F, the normal curvature is the same. 
In particular, if it is constant for (7, it is equal to the same 
constant for any curve of F. 

F was obtained by putting v' = ds'jds equal to unity, that 
is, by letting corresponding points on C and Q' be equal arc 
lengths apart. Other interesting families of curves may, no 
doubt, be obtained by choosing other proper expressions for v'. 
Thus, if we let v' be a function of 6 only, v' = v{6), we can go 
through a treatment similar to that for the F family. Since 

* G. Koenigs, Leçons de Cinématique, Note IV, §§ 2, 3, p. 252. 
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we may no longer use the same symbol s to denote arc length 
along any curve, we shall think of corresponding points along 
different curves as given by the same value of t. We now 
have (in place of (4)) 

dP(6, t) _ dP{6, t) ds' _ „ dP _ , w . . 

and, instead of (6), 

(9) P(fi, t) = cos 0 v(0)P(O, t) + sin 0 v(0)P (^ ,t \ • 

This is the locus of corresponding points on the curves now. 
It is still a plane curve and may be regarded as an affine 
projective image of the curve whose equation in polar coordi­
nates is p = fl(0), this curve taking the place of the unit 
circle of which the ellipses of family F were projective images. 

In case p = v(0) is an algebraic curve, it can be shown that 
the movements M, described by the moving trihedra of the 
curves as 0 varies while t is fixed, are still algebraic, that is, 
the path of any point during this motion is an algebraic curve; 
its degree is considerably higher than that of p = v(0). Thus 
if we take p = sec 0, the corresponding points of the curves 
always lie on straight lines. During the motion M the 
general point can be shown to describe a curve of the fourth 
degree which is an affine projective image of 

z = tan 0, x — cos 0, y = sin 0. 

Now let us return to the case where C is a cylindrical helix, 
the motion [/, S] reducing to a rotation of / about a fixed 
axis I (whose direction gives the direction of the rulings of 
the cylinder). The positions V could take up relative to I 
are now of two parameters instead of one. For, if the position 
of i be arbitrarily assigned, since the rotation vector lying on / 
must always be in the plane i', k\ the position of V is com­
pletely specified (except for the case when i coincides with I). 
I'(t) is now determined in time, and it remains only to choose 
v'(t) and the initial point in order to specify C'. Whichever 
V(t) we pick out, it rotates about I, i forming a constant angle 
with it. Hence all the curves C' are cylindrical helices, the 
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elements of whose cylinders are parallel to those of C. The 
curves obtained by putting v' = 1, and prescribing a common 
starting point Q form a two-parameter family of curves 0, such 
that any other curve whose indicatrix V is fixed relative to 
J is in a relation of Combescure to some curve of G. 

If we restrict i to lie in a plane through I, we pick out a 
one-parameter group of positions of I, which is of the type 
previously discussed for a general curve C. We may now 
construct the family F by picking out a position of i to measure 
6 from. For two values of 0 (differing by if) the unit tangent 
will coincide with I, yielding for the curve C a straight line C8. 
The two curves Cp that are conjugate to C8 will have their 
tangents perpendicular to the line C8, and consequently lie in 
a plane perpendicular to C8. The vectors joining Q to corre­
sponding points on Ca, Cp will form conjugate axes of the 
ellipse E, and being perpendicular to each other will now be 
the major and minor axes of E. The points of F can thus be 
obtained by having an ellipse move so that its major axis 
increases at a uniform rate along a straight line while the 
minor axis describes a plane curve with the same velocity. 

If we now rotate about I the plane in which we restricted 
I to lie, all possible positions of V (relative to I) are obtained. 
The infinitesimal vectors ids experience a fixed rotation about 
I, and the same is true of the sum vector Jlsids. Hence, all 
the other curves of G may be obtained from the one-parameter 
family just considered by rotating the latter about I. 

We see, therefore, that if we hold s constant, the locus of 
a point fixed relative to V is a surface of the fourth degree 
obtained by revolving an ellipse about the line I. In particular 
the locus of the vertex of V which describes the curves C 
themselves reduces to an ellipsoid of revolution since the 
ellipse has its major axis on I. The torsions and curvatures 
of C' are again linear combinations of those of C, the relation 
being given by (30. Hence, if C is a circular helix, so that 
T, K are constant, r ' , K' will also be constant, and all the curves 
of G will be circular helices. 
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